參考文獻 |
[ 1] 邓军英, 丁明月, 王文彩, 光莹, 陈勇航, 辛渝, . . . 朱曦. (2016). 冰云粒子微物理属性在一次强降雨过程中的垂直分布 ⓪. ARID LAND GEOGRAPHY, 39(1).
[ 2] 邓军英, 邱昀, 陈勇航, 杨莲梅, 何清, & 张萍. (2014). 强降雨过程中冰云粒子等效半径的垂直分布及其与降水的相关性. 自然灾害学报, 23(2), 120-129.
[ 3] Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., . . . Bolvin, D. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). Journal of hydrometeorology, 4(6), 1147-1167.
[ 4] Austin, R. (2007). Level 2B radar-only cloud water content (2B-CWC-RO) process description document. CloudSat project report, 5, 1-26.
[ 5] Austin, R. T., Heymsfield, A. J., & Stephens, G. L. (2009). Retrieval of ice cloud microphysical parameters using the CloudSat millimeter‐wave radar and temperature. Journal of Geophysical Research: Atmospheres, 114(D8).
[ 6] Battaglia, A., & Simmer, C. (2008). How does multiple scattering affect the spaceborne W-band radar measurements at ranges close to and crossing the sea-surface range? IEEE transactions on geoscience and remote sensing, 46(6), 1644-1651.
[ 7] Berg, W., Kummerow, C., & Morales, C. A. (2002). Differences between east and west Pacific rainfall systems. Journal of climate, 15(24), 3659-3672.
[ 8] Bodas‐Salcedo, A., Webb, M., Brooks, M., Ringer, M., Williams, K., Milton, S., & Wilson, D. (2008). Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. Journal of Geophysical Research: Atmospheres, 113(D8).
[ 9] Chua, Z. W., Kuleshov, Y., & Watkins, A. (2020). Evaluation of Satellite Precipitation Estimates over Australia. Remote Sensing, 12(4), 678.
[ 10] Dodson, J. B., Taylor, P. C., & Branson, M. (2018). Microphysical variability of Amazonian deep convective cores observed by CloudSat and simulated by a multi-scale modeling framework.
[ 11] Hamada, A., Murayama, Y., & Takayabu, Y. N. (2014). Regional characteristics of extreme rainfall extracted from TRMM PR measurements. Journal of Climate, 27(21), 8151-8169.
[ 12] Hamada, A., Takayabu, Y. N., Liu, C., & Zipser, E. J. (2015). Weak linkage between the heaviest rainfall and tallest storms. Nature communications, 6, 6213.
[ 13] Haynes, J. M., L′Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C., Wood, N. B., & Tanelli, S. (2009). Rainfall retrieval over the ocean with spaceborne W‐band radar. Journal of Geophysical Research: Atmospheres, 114(D8).
[ 14] Hong, Y., Liu, G., & Li, J. L. (2016). Assessing the radiative effects of global ice clouds based on CloudSat and CALIPSO measurements. Journal of Climate, 29(21), 7651-7674.
[ 15] Im, E., Wu, C., & Durden, S. L. (2005, May). Cloud profiling radar for the CloudSat mission. In IEEE International Radar Conference, 2005. (pp. 483-486). IEEE.
[ 16] Jakob, C., & Klein, S. A. (1999). The role of vertically varying cloud fraction in the parametrization of microphysical processes in the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 125(555), 941-965.
[ 17] Jiang, J. H., Su, H., Zhai, C., Perun, V. S., Del Genio, A., Nazarenko, L. S., . . . Cole, J. (2012). Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA “A‐Train” satellite observations. Journal of Geophysical Research: Atmospheres, 117(D14).
[ 18] Kawamoto, K. (2006). Relationships between cloud properties and precipitation amount over the Amazon basin. Atmospheric research, 82(1-2), 239-247.
[ 19] Kubar, T. L., & Hartmann, D. L. (2008). Vertical structure of tropical oceanic convective clouds and its relation to precipitation. Geophysical research letters, 35(3).
[ 20] Kubota, T., Shige, S., Hashizume, H., Aonashi, K., Takahashi, N., Seto, S., . . . Nakagawa, K. (2007). Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation. IEEE transactions on geoscience and remote sensing, 45(7), 2259-2275.
[ 21] Lau, W. K., Kim, K. M., Chern, J. D., Tao, W. K., & Leung, L. R. (2020). Structural changes and variability of the ITCZ induced by radiation–cloud–convection–circulation interactions: inferences from the Goddard Multi-scale Modeling Framework (GMMF) experiments. Climate Dynamics, 54(1-2), 211-229.
[ 22] Liou, K. N. (1986). Influence of cirrus clouds on weather and climate processes: A global perspective. Monthly Weather Review, 114(6), 1167-1199.
[ 23] Liu, C., Zipser, E. J., & Nesbitt, S. W. (2007). Global distribution of tropical deep convection: Different perspectives from TRMM infrared and radar data. Journal of climate, 20(3), 489-503.
[ 24] Luo, Y., Zhang, R., Qian, W., Luo, Z., & Hu, X. (2011). Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data. Journal of climate, 24(8), 2164-2177.
[ 25] Luo, Z., Liu, G. Y., & Stephens, G. L. (2008). CloudSat adding new insight into tropical penetrating convection. Geophysical research letters, 35(19).
[ 26] Luo, Z. J., Anderson, R. C., Rossow, W. B., & Takahashi, H. (2017). Tropical cloud and precipitation regimes as seen from near‐simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP. Journal of Geophysical Research: Atmospheres, 122(11), 5988-6003.
[ 27] Marchand, R., Mace, G. G., Ackerman, T., & Stephens, G. (2008). Hydrometeor detection using CloudSat—An Earth-orbiting 94-GHz cloud radar. Journal of Atmospheric and Oceanic Technology, 25(4), 519-533.
[ 28] Mega, T., Ushio, T., Kubota, T., Kachi, M., Aonashi, K., & Shige, S. (2014, August). Gauge adjusted global satellite mapping of precipitation (GSMaP_Gauge). In 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS) (pp. 1-4). IEEE.
[ 29] Nam, C. C., & Quaas, J. (2012). Evaluation of clouds and precipitation in the ECHAM5 general circulation model using CALIPSO and CloudSat satellite data. Journal of climate, 25(14), 4975-4992.
[ 30] Ning, S., Song, F., Udmale, P., Jin, J., Thapa, B. R., & Ishidaira, H. (2017). Error analysis and evaluation of the latest GSMap and IMERG precipitation products over Eastern China. Advances in Meteorology, 2017.
[ 31] Petersen, W. A., Carey, L. D., Rutledge, S. A., Knievel, J. C., Doesken, N. J., Johnson, R. H., . . . Weaver, J. F. (1999). Mesoscale and radar observations of the Fort Collins flash flood of 28 July 1997. Bulletin of the American Meteorological Society, 80(2), 191-216.
[ 32] Posselt, D. J., Heever, S. V. D., Stephens, G., & Igel, M. R. (2012). Changes in the interaction between tropical convection, radiation, and the large-scale circulation in a warming environment. Journal of climate, 25(2), 557-571.
[ 33] Sassen, K., Matrosov, S., & Campbell, J. (2007). CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation‐driven upside‐down lidar analog. Geophysical research letters, 34(16).
[ 34] Sassen, K., & Wang, Z. (2008). Classifying clouds around the globe with the CloudSat radar: 1‐year of results. Geophysical research letters, 35(4).
[ 35] Satoh, M., Inoue, T., & Miura, H. (2010). Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators. Journal of Geophysical Research: Atmospheres, 115(D4).
[ 36] Smith, J. A., Baeck, M. L., Morrison, J. E., & Sturdevant-Rees, P. (2000). Catastrophic rainfall and flooding in Texas. Journal of hydrometeorology, 1(1), 5-25.
[ 37] Smith, J. A., Baeck, M. L., Steiner, M., & Miller, A. J. (1996). Catastrophic rainfall from an upslope thunderstorm in the central Appalachians: The Rapidan storm of June 27, 1995. Water Resources Research, 32(10), 3099-3113.
[ 38] Sohn, B., Choi, M., & Ryu, J. (2015). Explaining darker deep convective clouds over the western Pacific than over tropical continental convective regions. Atmospheric Measurement Techniques, 8(11), 4573.
[ 39] Stephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. Journal of climate, 18(2), 237-273.
[ 40] Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., . . . Durden, S. L. (2002). The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bulletin of the American Meteorological Society, 83(12), 1771-1790.
[ 41] Stephens, G. L., & Wood, N. B. (2007). Properties of tropical convection observed by millimeter-wave radar systems. Monthly weather review, 135(3), 821-842.
[ 42] Ushio, T., Sasashige, K., Kubota, T., Shige, S., Okamoto, K. i., Aonashi, K., . . . Kachi, M. (2009). A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Journal of the Meteorological Society of Japan. Ser. II, 87, 137-151.
[ 43] Weare, B. C. (2000). Insights into the importance of cloud vertical structure in climate. Geophysical research letters, 27(6), 907-910.
[ 44] Witkowski, M. M., Vane, D., & Livermore, T. (2018). CloudSat-Life in Daylight Only Operations (DO-Op). Paper presented at the 2018 SpaceOps Conference.
[ 45] Yan, Y.-F., Wang, X.-C., & Liu, Y.-M. (2018). Cloud vertical structures associated with precipitation magnitudes over the Tibetan Plateau and its neighboring regions. Atmospheric and Oceanic Science Letters, 11(1), 44-53.
[ 46] Yin, J., Wang, D., Zhai, G., & Wang, Z. (2013). Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data. Acta Meteorologica Sinica, 27(1), 26-39.
[ 47] Yuter, S. E., & Houze Jr, R. A. (1995). Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Monthly weather review, 123(7), 1941-1963.
[ 48] Zhang, M., Lin, W., Klein, S., Bacmeister, J., Bony, S., Cederwall, R., . . . Lohmann, U. (2005). Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. Journal of Geophysical Research: Atmospheres, 110(D15).
[ 49] Zipser, E. J. (1994). Deep cumulonimbus cloud systems in the tropics with and without lightning. Monthly weather review, 122(8), 1837-1851.
|