參考文獻 |
Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224−232, https://doi.org/10.1038/nature11456.
Anderson, B. T., and Perez, R. C., 2015: ENSO and non-ENSO induced charging and discharging of the equatorial Pacific. Climate Dynamics, 45, 2309–2327, https://doi.org/10.1007/s00382-015-2472-x.
Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. Journal of Geophysical Research: Atmospheres, 112, C11007, https://doi.org/10.1029/2006JC003798.
Bayr, T., C. Wengel, M. Latif, D. Dommenget, J. Lübbecke, and W. Park, 2019: Error compensation of ENSO atmospheric feedbacks in climate models and its influence on simulated ENSO dynamics. Climate Dyn., 53, 155–172, https://doi.org/10.1007/s00382-018-4575-7.
Bellenger, H., E. Guilyardi, J. Leloup, M. Lengaigne, and J. Vialard, 2013: ENSO representation in climate models: from CMIP3 to CMIP5, Clim Dyn, 42, 1999–2018, https://doi.org/10.1007/s00382-013-1783-z.
Bing, Z., and S. Xie, 2017: The 2015/16 “Super” El Niño Event and Its Climatic Impact, Chinese Journal of Urban and Environmental Studies, 5, 1750017, https://doi.org/10.1142/S2345748117500178.
Bjerknes, J., 1969: Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163–172, https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2.
Cai, W., A. Santoso, G. Wang, S.-W. Yeh, S.-I. An, K. M. Cobb, M. Collins, E. Guilyardi, F.-F. Jin, J.-S. Kug, M. Lengaigne, M. J. McPhaden, K. Takahashi, A. Timmermann, G. Vecchi, M. Watanabe, and L. Wu, 2015a: ENSO and greenhouse warming. Nature Clim Change, 5, 849–859, https://doi.org/10.1038/nclimate2743.
Cai, W., S. Borlace, and M. Lengaigne, 2014: Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111–116, https://doi.org/10.1038/nclimate2100.
Cai, W., and coauthors, 2021: Changing El Niño-Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2, 628-644, https://doi.org/10.1038/s43017-021-00199-z.
Carton, J. A., G. A. Chepurin, L. Chen, 2018: SODA3: a new ocean climate reanalysis. Journal of Climate, 31, 6967-6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
Chen, D., T. Lian, C. Fu, M. A. Cane, Y. Tang, R. Murtugudde, X. Song, Q. Wu, and L. Zhou, 2015: Strong influence of westerly wind bursts on El Niño diversity. Nat. Geosci., 8, 339–345, https://doi.org/10.1038/ngeo2399.
Chen, L., T. Li, S. K. Behera, and T. Doi, 2016: Distinctive precursory air–sea signals between regular and super El Niños. Adv. Atmos. Sci., 33, 996–1004, https://doi.org/10.1007/s00376-016-5250-8.
Chiang, J. C., and D. J. Vimont, 2004: Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. Journal of Climate, 17, 4143–4158, https://doi.org/10.1175/JCLI4953.1.
Collins, M., S.-I. An, W. Cai, A. Ganachaud, E. Guilyardi, F.-F. Jin, M. Jochum, M. Lengaigne, S. Power, A. Timmermann, G. Vecchi, and A. Wittenberg, 2010: The impact of global warming on the tropical Pacific Ocean and El Nino. Nature Geosci, 3, 391–397, https://doi.org/10.1038/ngeo868.
Ding, R., J. Li, Y.-H. Tseng, C. Sun, and Y. Guo, 2015: The Victoria mode in the North Pacific linking extratropical sea level pressure variations to ENSO. Journal of Geophysical Research: Atmospheres, 120, 27-45, https://doi.org/10.1002/2014JD022221.
Di Lorenzo, E., G. Liguori, N. Schneider, J. C. Furtado, B. T. Anderson, and M. A. Alexander, 2015: ENSO and meridional modes: A null hypothesis for Pacific climate variability, Geophysical Research Letters, 42, 9440–9448, https://doi.org/10.1002/2015GL066281.
DiNezio, P. N., B. P. Kirtman, A. C. Clement, S.-K. Lee, G. A. Vecchi, and A. Wittenberg, 2012: Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim., 25, 7399–7420, https://doi.org/10.1002/2015GL066281.
Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937-1958, https://doi.org/10.5194/gmd-9-1937-2016.
Fang, X., and R. Xie, 2020: A brief review of ENSO theories and prediction. Science China: Earth Sciences, 63, 476-491, https://doi.org/10.1007/s11430-019-9539-0.
Fu, C., H. Diaz, and J. Fletcher, 1986: Characteristics of the response of sea surface temperature in the central Pacific associated with warm episodes of the Southern Oscillation. Monthly Weather Review, 114, 1716–1739, https://doi.org/10.1175/1520-0493(1986)114<1716:COTROS>2.0.CO;2.
Geng, X., Wenjun Zhang, Malte F. Stuecker and Fei-Fei Jin, 2017: Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Niño events. Scientific Reports, 7, 3770, https://doi.org/10.1038/s41598-017-03977-2.
Glantz, M. H., 2001: Currents of Change: Impacts of El Niño and La Niña on Climate and Society. Cambridge University Press, 266 pp.
Guilyardi, E., A. Wittenberg, A. Fedorov, M. Collins, C. Wang, A. Capotondi, G.-J. Oldenborgh, and T. Stockdale, 2009a: Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Am Met Soc, 90, 325–340, https://doi.org/10.1175/2008BAMS2387.1.
Guilyardi, E., P. Braconnot, F.–F. Jin, S.-T. Kim, M. Kolasinski, T. Li, and I. Musat, 2009b: Atmosphere feedbacks during ENSO in a coupled GCM with a modified atmospheric convection scheme. J Clim, 22, 5698–5718, https://doi.org/10.1175/2009JCLI2815.1.
Hersbach, H, B. Bell, P. Berrisford, et al., 2020: The ERA5 global reanalysis. Quarterly Journal of Royal Meteorological Society, 146, 1999-2049, https://doi.org/10.1002/qj.3803.
Hong, L.-C., LinHo, and F.-F. Jin, 2014: A Southern Hemisphere booster of super El Niño. eophys. Res. Lett., 41, 2142–2149, https://doi.org/10.1002/2014GL059370.
Huang, B., P. W. Thorne, V. F. Banzon, T. Boyer, G. Chepurin, J. H. Lawrimore, M. J. Menne, T. M. Smith, R. S. Vose, H.-M. Zhang, 2017: Extended Reconstructed Sea Surface Temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. Journal of Climate, 30, 8179-8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
Jia, F., W. Cai, B. Gan, L. Wu, and E. Di Lorenzo, 2021: Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nature Climate Change, 11, 840–847, https://doi.org/10.1038/s41558-021-01139-x.
Jian, Rao, and R. Ren, 2017: Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Advances in Atmospheric Sciences, 34, 1121–1133, https://doi.org/10.1007/s00376-017-6260-x.
Jin, F.-F., 1997a: An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54, 811–829, https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2.
Jin, F.-F., 1997b: An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. Journal of the Atmospheric Sciences, 54, 830–847, https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2.
Jin, F.-F., S. T. Kim, and L. Bejarano, 2006: A coupled-stability index of ENSO. Geophys. Res. Lett., 33, L23708, https://doi.org/10.1029/2006GL027221.
Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. Journal of Climate, 22, 615-632, https://doi.org/10.1175/2008JCLI2309.1.
Kim, S. T., and F.-F. Jin, 2011: An ENSO stability analysis. Part I: Results from a hybrid coupled model. Clim. Dynam., 36, 15931607, https://doi.org/10.1007/s00382-010-0796-0.
Kim, S.-T., and F.-F. Jin, 2011: An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn, 36, 1609–1627, https://doi.org/10.1007/s00382-010-0872-5.
Kim, S.-T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Niño sea surface temperature variability to greenhouse warming. Nature Climate Change, 4, 786-790, https://doi.org/10.1038/nclimate2326.
Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two type of El Niño events: cold tongue El Niño and warm pool El Niño. Journal of Climate, 22, 1499-1515, https://doi.org/10.1175/2008JCLI2624.1.
Latif, M., and N. Keenlyside, 2009: El Nino/Southern Oscillation response to global warming. Proc. Natl. Acad. Sci., 106, 20578–20583, https://doi.org/10.1073/pnas.071086010.
Latif, M., V. A. Semenov, and W. Park, 2015: Super El Niños in response to global warming in a climate model. Climatic Change, 132, 489-500, https://doi.org/10.1007/s10584-015-1439-6.
Larkin, N. K., and D. E. Harrison, 2005: Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophysical Research Letters, 32, L16705, https://doi.org/10.1029/2005GL022860.
L’Heureux, M. L., and Coauthors, 2017: Observing and predicting the 2015/16 El Niño. Bull. Amer. Meteor. Soc., 98, 1363–1382, https://doi.org/10.1175/BAMS-D-16-0009.1.
Li, J.-L., E. Suhas, M. Richardson, W.-L. Lee, Y.-H. Wang, J.-Y. Yu, T. Lee, E. Fetzer, G. Stephens, and M.-H. Shen, 2018: The impacts of bias in cloud-radiation-dynamics interactions on central-Pacific seasonal and El Nino simulations in contemporary GCMs. Earth and Space Science, 5, 50-60, https://doi.org/10.1002/2017EA000304.
Li, J.-L., K.M. Xu, J.-H. Jiang, W.-L. Lee, L.-C. Wang, J.-Y. Yu, G, Stephens, E. Fetzer, Y.-H. Wang, 2020: An overview of CMIP5 and CMIP6 simulated cloud ice, radiation fields, surface wind stress, sea surface temperatures and precipitation over tropical and subtropical oceans. Journal of Geophysical Research: Atmospheres, 125, e2020JD032848, https://doi.org/10.1029/2020JD032848.
Li, J.-L., K.-M. Xu, W.-L. Lee, J.-H. Jiang, E. Fetzer, G. Stephens, Y.-H. Wang, and J.-Y. Yu, 2022: Exploring radiation biases over the tropical and subtropical oceans based on treatments of frozen hydrometeor radiative properties in CMIP6 models. Journal of Geophysical Research: Atmospheres, 127, e2021JD035976, https://doi.org/10.1029/2021JD035976.
Li, J.-L., Y.-C. Tsai, K.-M. Xu, W.-L. Lee, J.-H. Jiang, J.-Y. Yu, E. Fetzer, and G. Stephens, 2022: Inferring the linkage of sea surface height anomalies, surface wind stress and sea surface temperature with the falling ice radiative effects using satellite data and global climate models. Environmental Research Communications, 4, 125004, https://doi.org/10.1088/2515-7620/aca3fe.
Liu, Z., and M. Alexander, 2007: Atmospheric bridge, oceanic tunnel, and global climatic teleconnections. Reviews of Geophysics, 45, 1-34, https://doi.org/10.1029/2005RG000172.
Lloyd, J., E. Guilyardi, and H. Weller, 2012: The role of atmosphere feedbacks during ENSO in the CMIP3 models, Part III: the shortwave feedback. J Clim, 25, 4275-4293, https://doi.org/10.1175/JCLI-D-11-00178.1.
Merryfield, W. J., 2006: Changes to ENSO under CO2 doubling in a multimodel ensemble. J. Clim., 19, 4009–4027, https://doi.org/10.1175/JCLI3834.1.
Neelin, J. D., D. S. Battisti, A. C. Hirst, F.-F. Jin, Y. Wakata, T. Yamada, and S. E. Zebiak, 2009: ENSO theory. Journal of Geophysical Research, 103, 14261-14290, https://doi.org/10.1029/97JC03424.
Philander, S. G. H., 1985: El Niño and La Niña. Journal of the Atmospheric Sciences, 42, 2652-2662, https://doi.org/10.1175/1520-0469(1985)042<2652:ENALN>2.0.CO;2.
Power, S., F. Delage, C. Chung, G. Kociuba, and K. Keay, 2013: Robust twenty-first-century projections of El Niño and related precipitation variability. Nature, 502, 541–545, https://doi.org/10.1038/nature12580.
Shen, M.-H., and J.-Y. Yu, 2023: Changes in El Niño characteristics and air-sea feedback mechanisms under progressive global warming. Terrestrial Atmospheric & Oceanic Sciences, 34, 19, https://doi.org/10.1007/s44195-023-00051-5.
Smith, T. M., and R. W. Reynolds, 2003: Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). Journal of Climate, 16, 1495–1510, https://doi.org/10.1175/1520-0442(2003)016<1495:EROGSS>2.0.CO;2.
Stevenson, S. L., 2012: Significant changes to ENSO strength and impacts in the twenty-first century: Results from CMIP5. Geophys. Res. Lett., 39, L17703, https://doi.org/10.1029/2012GL052759.
Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183-7192, https://doi.org/10.1029/2000JD900719.
Taylor, K. E., R.J. Stouffer, and G.A. Meehl, 2012: An overview of CMIP5 and the experiment design Bull. Am. Meteorol. Soc., 93, pp. 485-498, https://doi.org/10.1175/BAMS-D-11-00094.1.
Trenberth, K. E., 1997: The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771-2777, https://doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2.
Vimont, D. J., J. M. Wallace, and D. S. Battisti, 2003: The seasonal footprinting mechanism in the Pacific: Implications for ENSO. Journal of Climate, 16, 2668–2675, https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2.
Wang, C., 2018: A review of ENSO theories. National Science Review, 5, 813-825, https://doi.org/10.1093/nsr/nwy104.
Wang, J.-Z. and C. Wang, 2021: Joint Boost to Super El Niño from the Indian and Atlantic Oceans. J. Climate, 34, 4937–4954, https://doi.org/10.1175/JCLI-D-20-0710.1.
Wang, L.-C., J.-L. Li, K.-M. Xu, L. T. Dao, W.-L. Lee, J. H. Jiang, E. Fetzer, Y.-H. Wang, J.-Y. Yu, C.-A. Chen, 2021: The Potential Influence of Falling Ice Radiative Effects on Central-Pacific El Niño Variability under Progressive Global Warming. Environmental Research Letters, 16, 124062, https://doi.org/10.1088/1748-9326/ac3d56.
Webb, D. J., 2018: On the role of the North Equatorial Counter Current during a strong El Niño, Ocean Science, 14, 633–660, https://doi.org/10.5194/os-14-633-2018.
Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, R. B. Lee, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth′s Radiant Energy System (CERES): An Earth Observing System Experiment. Bull. Am. Meteorol. Soc., 77, 853-868, https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
Xie, S. P., and S. G. H. Philander, 1994: A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A, 46, 340–350, https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x.
Xu, K., C.-Y. Tam, C. Zhu, B. Liu, and W. Wang, 2016: CMIP5 Projections of Two Types of El Niño and Their Related Tropical Precipitation in the Twenty-First Century, Journal of Climate, 30, 849-864, https://doi.org/10.1175/JCLI-D-16-0413.1.
Xu, J., and J. C. L. Chan, 2001: The role of the Asian–Australian monsoon system in the onset time of El Niño events. Journal of Climate, 14, 418–433, https://doi.org/10.1175/1520-0442(2001)014<0418:TROTAA>2.0.CO;2.
Yeh, S.-W., and B. P. Kirtman, 2007: ENSO amplitude changes due to climate change projections in different coupled models. J. Clim., 20, 203–217, https://doi.org/10.1175/JCLI4001.1.
Yeh, S.-W., and J.-S. Kug, 2009: El Niño in a changing climate, Nature Letters, 461, 511-514, https://doi.org/10.1038/nature08316.
Ying, J, and P. Huang, 2016: Cloud-radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models. Journal of Climate, 29, 3867-3881, https://doi.org/10.1175/JCLI-D-15-0796.1.
Yu, J.-Y., and H.-K. Kao, 2007: Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001. Journal of Geophysical Research: Atmospheres, 112, D13106, https://doi.org/10.1029/2006JD007654.
Yu., J.-Y., and S. T. Kim, 2011: Relationships between extratropical sea level pressure variations and the central-Pacific and eastern-Pacific types of ENSO. Journal of Climate, 24, 708-720, https://doi.org/10.1175/2010JCLI3688.1.
Yu, J.-Y., and S. T. Kim, 2013: Identifying the types of major El Niño events since 1870. Int. J. Climatol., 33, 2105–2112, https://doi.org/10.1002/joc.3575.
Yu, J.-Y., and S.-W. Fang, 2018: The distinct contributions of the seasonal footprinting and charged-discharged mechanisms to ENSO complexity. Geophysical Research Letters, 45, 6611-6618, https://doi.org/10.1029/2018GL077664.
Zebiak, S. E., and M. A. Cane, 1987: A model El Nino-Southern Oscillation. Monthly Weather Review, 115, 2262–78, https://doi.org/10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2.
Zelle, H., G. J. van Oldenborgh, G. Burgers, and H. Dijkstra, 2005: El Niño and greenhouse warming: results from ensemble simulations with the NCAR CCSM. J. Clim., 18, 4669–4683, https://doi.org/10.1175/JCLI3574.1.
Zhai, P. M., and Coauthors, 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. Journal of Meteorological Research, 30, 283–297, doi: 10.1007/s13351-016-6101-3, https://doi.org/10.1007/s13351-016-6101-3.
Zhang, Z., B. Ren, and J. Zheng, 2019: A unified complex index to characterize two types of ENSO simultaneously. Sci. Rep., 9, 8373, https://doi.org/10.1038/s41598-019-44617-1. |