博碩士論文 105686001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.227.46.54
姓名 林君蔚(Chun-Wei Lin)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 台灣風暴潮系集預報系統的發展與評估
(Development and Evaluation of Operational Storm Surge Ensemble Prediction System in Taiwan)
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-1以後開放)
摘要(中) 本研究主要目標為透過最大限度地利用現有氣象資源,為台灣開發一個可供作業化的風暴潮系集預報系統。該模型是根據數值風暴潮模型 COMCOT-SURGE、潮汐模型 TPXO 以及根據區域系集天氣預報系統 (WEPS) 和颱風預報歷史誤差統計產生集合成員的技術所驅動的,根據不同成員數量的系集組成方式,得到可以平衡預測表現與計算效能的建議。
研究中首先使用颱風最佳路徑參數資料和區域颱風天氣預報系統TWRF之分析場進行後報,以檢查在氣象場輸入準確時暴潮模式的預測表現,研究中顯示理想風場和TWRF模式分析場在不同情況下都有優勢。在系集組成方式的比較中,對2016年四次颱風事件的所有預報對生成集合成員的所有可用技術進行評估,並展示颱風登陸/最接近台灣前24小時的系集預報產品。在各個案例比較結果中表明,WEPS相關的系集組合始終低估了觀測到的水位,而路徑誤差系集組合則普遍高估了極端情況。在評估績效的指標中顯示,增加集合成員可以提高可能性的覆蓋範圍,但計算收益遞減,並且來自歷史預測誤差分佈的成員組合可以有效地執行並具有足夠的完整性。
總體而言,本研究展示了為台灣研發作業用風暴潮系集預報系統的有效方法。研究中針對模式開發提供了準確性評估、不確定性的表示方式、計算效能和預報產品解釋。該系統在幫助備災方面具有廣闊的潛力。
摘要(英) The main objective of this study is to develop an operational storm surge ensemble forecasting system for Taiwan by maximizing the use of existing meteorological resources. The model is driven by the numerical storm surge model COMCOT-SURGE, the tidal model TPXO, and ensemble member generation techniques based on the regional ensemble weather forecasting system (WEPS) and historical typhoon forecast error statistics. Based on different ensemble configurations with varying member counts, recommendations that balance forecast performance and computational efficiency are obtained.
The study first conducts hindcasts using best track parameters and analysis fields from the regional Typhoon Weather Research and Forecast System (TWRF) to evaluate the predictive performance of the surge model given accurate meteorological inputs. The results show that the idealized wind and TWRF analysis fields have advantages in different situations. In comparing ensemble configuration approaches, all available techniques for generating ensemble members are assessed for four typhoon cases in 2016, and ensemble forecast products 24 hours before typhoon landfall/closest approach to Taiwan are displayed. The inter-case comparison indicate that the WEPS-related ensemble consistently underestimates the observed water levels, while the track error ensemble tends to overestimate. Performance metrics show that increasing ensemble members can improve possibility coverage but with diminishing returns in computation, and combinations drawing from historical forecast error distributions can perform effectively with sufficient integrity.
This study demonstrates practical approaches for developing an operational storm surge ensemble forecasting system for Taiwan. The research assesses accuracy, representations of uncertainty, computational efficiency, and interpretations of forecast products about system development. Such a system holds great potential in aiding disaster preparation.
關鍵字(中) ★ 風暴潮
★ 系集預報
★ 區域系集天氣預報系統
★ 誤差統計
關鍵字(英) ★ storm surge
★ ensemble forecast
★ WEPS
★ error statistics
論文目次 CHINESE ABSTRACT/中文摘要 I
ABSTRACT II
TABLE OF CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES XVIII
CHAPTER 1 - INTRODUCTION 1
1.1 OVERVIEW 1
1.2 NATIONAL OPERATING ENSEMBLE STORM SURGE FORECASTS 3
1.2.1 WESTERN NORTH PACIFIC 3
1.2.2 NORTH AMERICA 5
1.2.3 EUROPE 7
1.2.4 SOUTHERN HEMISPHERE 8
1.2.5 SUMMARY 9
1.3 OTHER PROBABILISTIC ASSESSMENT TECHNIQUES 10
1.3.1 PROBABILISTIC MODELS 10
1.3.2 MULTI-MODEL ENSEMBLE PREDICTIONS 13
1.4 THE SCOPE OF THIS STUDY 16
CHAPTER 2 - STORM SURGE ENSEMBLE MODEL 17
2.1 DEPTH-INTEGRATED STORM SURGE AND TIDE MODEL 17
2.1.1 COMCOT-SURGE 17
2.1.2 OSU TPXO GLOBAL TIDE MODEL 19
2.2 THE METHODS OF GENERATING ENSEMBLE MEMBERS 21
2.2.1 THE AVAILABLE ATMOSPHERIC DATA IN THIS STUDY 21
2.2.2 THE METHODS TO MANIPULATE THE ENSEMBLE CONSTITUTION 30
2.3 THE COMPUTATIONAL DOMAIN AND SETTINGS IN THIS STUDY 51
CHAPTER 3 - STORM SURGE ERROR DISTRIBUTION FROM DETERMINISTIC FORECASTS 58
3.1 PURE-TIDE DRIVEN MODELING COMPARE WITH THE TIDE GAUGES OBSERVATION 58
3.2 THE HINDCAST FROM THE BEST TRACK DATA AND ANALYZED METEOROLOGICAL FIELDS 87
3.3 STORM SURGE FORECAST BY IDEALIZED WIND MODELS 123
CHAPTER 4 - COMPARISON AND EVALUATION OF ENSEMBLE CONSTITUTION 128
4.1 COMPARISON OF ONE-DIMENSIONAL FORECAST PRODUCTS 136
4.1.1 STATISTICAL WATER LEVEL DISTRIBUTION TIME SERIES 136
4.1.2 ENSEMBLE MEAN AND SPREAD GRAPHS 161
4.1.3 MAXIMUM WATER LEVEL DISTRIBUTION BOX PLOTS 172
4.2 COMPARISON OF TWO-DIMENSIONAL FORECAST PRODUCTS 177
4.2.1 10% EXCEEDANCE PROBABILITY DISTRIBUTION 180
4.2.2 THRESHOLD EXCEEDANCE PROBABILITY DISTRIBUTION 208
4.2.3 THE ENSEMBLE MEAN AND TWO-DIMENSIONAL STANDARD DEVIATION DISTRIBUTION 235
4.3 PERFORMANCE EVALUATION OF PRESENTED STORM SURGE ENSEMBLE CONSTITUTIONS 264
4.4 ANALYSIS OF COMPUTATIONAL PERFORMANCE AND INTEGRITY ASSESSMENT 282
CHAPTER 5 - CONCLUSIONS AND FUTURE WORKS 290
5.1 CONCLUSIONS 290
5.2 FUTURE WORKS 293
REFERENCE 294
APPENDIX A. OBSERVATIONS FOR TIDE GAUGES 305
APPENDIX B. DISSERTATION DEFENSE RECORD AND RESPONSE TO REVIEW COMMENTS 308
I. INFORMATION OF DISSERTATION DEFENSE 308
I. REVIEW COMMENTS #1 (DR. CHUEN-TEYR TERNG) 309
II. REVIEW COMMENTS #2 (DR. SHI-CHUN HSIAO) 313
III. REVIEW COMMENTS #3 (DR. CHIA-REN CHU) 315
參考文獻 Amante, C., & Eakins, B. W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis.
Anderson, J. L. (2001). An ensemble adjustment Kalman filter for data assimilation. Monthly Weather Review, 129(12), 2884-2903.
Annual Report of Taiwan Tide Observation Data in 2020. (2022). (W.-C. YANG, Ed.). Marine Science and Information Research Center. https://doi.org/https://www.namr.gov.tw/ebook/1111103-3003/mobile/index.html
Aquatrak. (2006). User’s Guide Model 4100/4110 Series. http://www.aquatrak.com/Downloads/Models_4100_&_4110_Manual.pdf
Arakawa, A., & Lamb, V. R. (1977). Computational design of the basic dynamical processes of the UCLA general circulation model. General circulation models of the atmosphere, 17(Supplement C), 173-265.
Bernier, N. B., & Thompson, K. R. (2015). Deterministic and ensemble storm surge prediction for Atlantic Canada with lead times of hours to ten days. Ocean Modelling, 86, 114-127.
Bobanovic, J. (1998). Barotropic circulation variability on Canadian Atlantic Shelves
Bode, L., & Hardy, T. A. (1997). Progress and recent developments in storm surge modeling. Journal of Hydraulic Engineering, 123(4), 315-331.
Bowler, N. E., Arribas, A., Mylne, K. R., Robertson, K. B., & Beare, S. E. (2008). The MOGREPS short‐range ensemble prediction system. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 134(632), 703-722.
Brand, S., & Blelloch, J. W. (1974). Changes in the characteristics of typhoons crossing the island of Taiwan. Monthly Weather Review, 102(10), 708-713.
Bröcker, J., & Smith, L. A. (2007). Scoring probabilistic forecasts: The importance of being proper. Weather and Forecasting, 22(2), 382-388.
Burroughs, L. D., & Shaffer, W. (1997). East coast extratropical storm surge and beach erosion guidance. US Department of Commerce, National Oceanic and Atmospheric Administration ….
Chen, D.-S., Hsiao, L.-F., Xie, J.-H., Hong, J.-S., Fong, C.-T., & Yeh, T.-C. (2020). Improve Tropical Cyclone Prediction of TWRF with the Application of Advanced Observation Data. EGU General Assembly Conference Abstracts,
Chen, D., Hsiao, L., Yeh, T., Cheng, C., Fong, C., & Hong, J. (2017). Impact of the TWRF model resolutions on tropical cyclone track, intensity and rainfall predictions over the western North Pacific. Asia Oceania Geosciences Society (AOGS) 14th Annual Meeting,
Chih, C.-H. P., Wu, C.-C., Huang, Y.-H., Li, Y.-C., Shen, L.-Z., Hsu, H.-H., & Liang, H.-C. (2023). Intense Tropical Cyclones in the Western North Pacific under Global Warming: A Dynamical Downscaling Approach. Authorea Preprints.
Choy, C.-w., of Insurers, T. H. K. F., Wu, M.-c., & Lee, T.-c. (2020). Assessment of the damages and direct economic loss in Hong Kong due to Super Typhoon Mangkhut in 2018. Tropical Cyclone Research and Review, 9(4), 193-205.
Contento, A., Xu, H., & Gardoni, P. (2020). Probabilistic formulation for storm surge predictions. Structure and Infrastructure Engineering, 16(4), 547-566.
de Vries, H. (2009). Probability forecasts for water levels at the coast of the Netherlands. Marine Geodesy, 32(2), 100-107.
DeMaria, M., Knaff, J. A., Knabb, R., Lauer, C., Sampson, C. R., & DeMaria, R. T. (2009). A new method for estimating tropical cyclone wind speed probabilities. Weather and Forecasting, 24(6), 1573-1591.
Di Liberto, T., Colle, B. A., Georgas, N., Blumberg, A. F., & Taylor, A. A. (2011). Verification of a multimodel storm surge ensemble around New York City and Long Island for the cool season. Weather and Forecasting, 26(6), 922-939.
Druck. (2013). 1830 Series Druck High Performance Level Pressure Sensors. https://www.instrumart.com/assets/1830-datasheet.pdf
Egbert, G. D., Bennett, A. F., & Foreman, M. G. (1994). TOPEX/POSEIDON tides estimated using a global inverse model. Journal of Geophysical Research: Oceans, 99(C12), 24821-24852.
Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic technology, 19(2), 183-204.
Fang, P., Ye, G., & Yu, H. (2020). A parametric wind field model and its application in simulating historical typhoons in the western North Pacific Ocean. Journal of Wind Engineering and Industrial Aerodynamics, 199, 104131.
Ferrarin, C., Valentini, A., Vodopivec, M., Klaric, D., Massaro, G., Bajo, M., De Pascalis, F., Fadini, A., Ghezzo, M., & Menegon, S. (2020). Integrated sea storm management strategy: the 29 October 2018 event in the Adriatic Sea. Natural Hazards and Earth System Sciences, 20(1), 73-93.
Flather, R. (1979). Recent results from a storm surge prediction scheme for the North Sea. In Elsevier Oceanography Series (Vol. 25, pp. 385-409). Elsevier.
Flather, R., Proctor, R., & Wolf, J. (1991). Oceanographic forecast models. Computer Modeling in the Environmental Sciences. DG Famer and MJ Rycroft. In: Oxford. UK, 15e30.
Flather, R. A. (1994). A storm surge prediction model for the northern Bay of Bengal with application to the cyclone disaster in April 1991. Journal of physical oceanography, 24(1), 172-190.
Flowerdew, J., Horsburgh, K., & Mylne, K. (2009). Ensemble Forecasting of Storm Surges. Marine Geodesy, 32(2), 91-99. https://doi.org/10.1080/01490410902869151
Flowerdew, J., Horsburgh, K., Wilson, C., & Mylne, K. (2010). Development and evaluation of an ensemble forecasting system for coastal storm surges. Quarterly Journal of the Royal Meteorological Society, 136(651), 1444-1456.
Flowerdew, J., Mylne, K., Jones, C., & Titley, H. (2013). Extending the forecast range of the UK storm surge ensemble. Quarterly Journal of the Royal Meteorological Society, 139(670), 184-197.
Fossell, K. R., Ahijevych, D., Morss, R. E., Snyder, C., & Davis, C. (2017). The practical predictability of storm tide from tropical cyclones in the Gulf of Mexico. Monthly Weather Review, 145(12), 5103-5121.
Gerritsen, H., de Vries, H., & Philippart, M. (1995). The Dutch continental shelf model. Quantitative skill assessment for coastal ocean models, 47, 425-467.
Glahn, B., Taylor, A., Kurkowski, N., & Shaffer, W. A. (2009). The role of the SLOSH model in National Weather Service storm surge forecasting. National Weather Digest, 33(1), 3-14.
Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application, 1, 125-151.
Gong, D., Tang, X., Chan, J. C., & Wang, Q. (2022). Trends of Tropical Cyclone Translation Speed over the Western North Pacific during 1980− 2018. Atmosphere, 13(6), 896.
Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides, 35, 130.
Greenslade, D., Colberg, F., Divakaran, P., Freeman, J., Kepert, J. D., Schulz, E., Sims, H., Taylor, A., & Velic, M. (2018). A First Generation Dynamical Tropical Cyclone Storm Surge Forecast System: Part 1: Hydrodynamic Model. Australian Bureau of Meteorology Melbourne, Australian.
Group, G. B. C. (2021). The GEBCO_2021 Grid - a continuous terrain model of the global oceans and land NERC EDS British Oceanographic Data Centre NOC. https://doi.org/doi:10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E., Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., & Lanerolle, L. (2008). Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System. Journal of computational physics, 227(7), 3595-3624.
Haigh, I. D., MacPherson, L. R., Mason, M. S., Wijeratne, E., Pattiaratchi, C. B., Crompton, R. P., & George, S. (2014). Estimating present day extreme water level exceedance probabilities around the coastline of Australia: tropical cyclone-induced storm surges. Climate Dynamics, 42, 139-157.
Harper, B., & Holland, G. (1999). An updated parametric model of the tropical cyclone. Proc. 23rd Conf. Hurricanes and Tropical Meteorology,
Hasegawa, H., Kohno, N., Higaki, M., & Itoh, M. (2017). Upgrade of JMA’s storm surge prediction for the WMO Storm Surge Watch Scheme (SSWS). Technical review, RSMC Tokyo-Typhoon Center, 19, 1-9.
Hasegawa, H., Kohno, N., & Itoh, M. (2015). Development of storm surge model in Japan Meteorological Agency. Office of Marine prediction, JMA.
Hasegawa, H., SUGANO, J., FUKUURA, T., & HIGAKI, M. (2023). Upgrade of JMA’s Storm Surge Prediction for the WMO Storm Surge Watch Scheme (SSWS) in 2022.
Higaki, M., Hayashibara, H., & Nozaki, F. (2009). Outline of the storm surge prediction model at the Japan Meteorological Agency. RSMC Tokyo—Typhoon Center Technical Review, 11, 25-38.
Holland, G. J. (1980). An analytic model of the wind and pressure profiles in hurricanes.
Hsiao, L.-F., Chen, D.-S., Hong, J.-S., Yeh, T.-C., & Fong, C.-T. (2020). Improvement of the Numerical Tropical Cyclone Prediction System at the Central Weather Bureau of Taiwan: TWRF (Typhoon WRF). Atmosphere, 11(6), 657. https://www.mdpi.com/2073-4433/11/6/657
Hsiao, L.-F., Liou, C.-S., Yeh, T.-C., Guo, Y.-R., Chen, D.-S., Huang, K.-N., Terng, C.-T., & Chen, J.-H. (2010). A vortex relocation scheme for tropical cyclone initialization in advanced research WRF. Monthly Weather Review, 138(8), 3298-3315.
Hubbert, G. D., & Mclnnes, K. L. (1999). A storm surge inundation model for coastal planning and impact studies. Journal of Coastal Research, 168-185.
Hughes, L. A. (1952). On the low-level structure of tropical storms. Journal of Atmospheric Sciences, 9(6), 422-428.
Irish, J. L., Resio, D. T., & Cialone, M. A. (2009). A surge response function approach to coastal hazard assessment. Part 2: Quantification of spatial attributes of response functions. Natural Hazards, 51, 183-205.
Irish, J. L., Resio, D. T., & Ratcliff, J. J. (2008). The influence of storm size on hurricane surge. Journal of physical oceanography, 38(9), 2003-2013.
Jackman, S. (2009). Bayesian analysis for the social sciences. John Wiley & Sons.
Jelesnianski, C. P. (1972). SPLASH:(Special Program to List Amplitudes of Surges from Hurricanes). I, Landfall storms.
Jelesnianski, C. P. (1992). SLOSH: Sea, lake, and overland surges from hurricanes (Vol. 48). US Department of Commerce, National Oceanic and Atmospheric Administration ….
Jia, G., & Taflanidis, A. A. (2013). Kriging metamodeling for approximation of high-dimensional wave and surge responses in real-time storm/hurricane risk assessment. Computer Methods in Applied Mechanics and Engineering, 261, 24-38.
Jia, G., Taflanidis, A. A., Nadal-Caraballo, N. C., Melby, J. A., Kennedy, A. B., & Smith, J. M. (2016). Surrogate modeling for peak or time-dependent storm surge prediction over an extended coastal region using an existing database of synthetic storms. Natural Hazards, 81, 909-938.
Jian, G.-J., Teng, J.-H., Wang, S.-T., Cheng, M.-D., Cheng, C.-P., Chen, J.-H., & Chu, Y.-J. (2022). An overview of the tropical cyclone database at the Central Weather Bureau of Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 26.
Kato, F. (2005). Study on Risk Assessment of Storm Surge Flood, Technical Note of National Institute for Land and Infrastructure Management of Japan; No. 275. National Institute for Land and Infrastructure Management: Tokyo, Japan.
Kim, S.-C., Chen, J., & Shaffer, W. (1996). An operational forecast model for extratropical storm surges along the US east coast. Preprints Conference on Coastal Oceanic and Atmospheric Prediction, Atlanta, Amer. Meteor. Soc,
Kim, S.-W., Melby, J. A., Nadal-Caraballo, N. C., & Ratcliff, J. (2015). A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling. Natural Hazards, 76, 565-585.
Knaff, J. A., Sampson, C. R., DeMaria, M., Marchok, T. P., Gross, J. M., & McAdie, C. J. (2007). Statistical tropical cyclone wind radii prediction using climatology and persistence. Weather and Forecasting, 22(4), 781-791.
Kohno, N., Dube, S. K., Entel, M., Fakhruddin, S., Greenslade, D., Leroux, M.-D., Rhome, J., & Thuy, N. B. (2018). Recent progress in storm surge forecasting. Tropical Cyclone Research and Review, 7(2), 128-139.
Krien, Y., Dudon, B., Roger, J., & Zahibo, N. (2015). Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles. Natural Hazards and Earth System Science, 15(8), 1711-1720.
Kristensen, N. M., Røed, L. P., & Sætra, Ø. (2022). A forecasting and warning system of storm surge events along the Norwegian coast. Environmental Fluid Mechanics, 23(2), 307-329. https://doi.org/10.1007/s10652-022-09871-4
Large, W., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of physical oceanography, 11(3), 324-336.
Lee, T.-L. (2006). Neural network prediction of a storm surge. Ocean Engineering, 33(3-4), 483-494.
Leroux, M.-D., Wood, K., Elsberry, R. L., Cayanan, E. O., Hendricks, E., Kucas, M., Otto, P., Rogers, R., Sampson, B., & Yu, Z. (2018). Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall. Tropical Cyclone Research and Review, 7(2), 85-105.
Leutbecher, M., & Palmer, T. N. (2008). Ensemble forecasting. Journal of computational physics, 227(7), 3515-3539.
Li, C.-H., Berner, J., Hong, J.-S., Fong, C.-T., & Kuo, Y.-H. (2020). The Taiwan WRF Ensemble Prediction System: Scientific Description, Model-Error Representation and Performance Results. Asia-Pacific Journal of Atmospheric Sciences, 56(1), 1-15. https://doi.org/10.1007/s13143-019-00127-8
Li, Y., Tang, Y., Li, X., Song, X., & Wang, Q. (2023). Recent increase in the potential threat of western North Pacific tropical cyclones. npj Climate and Atmospheric Science, 6(1), 53.
Lin, Y.-F., Wu, C.-C., Yen, T.-H., Huang, Y.-H., & Lien, G.-Y. (2020). Typhoon Fanapi (2010) and its interaction with Taiwan terrain–evaluation of the uncertainty in track, intensity and rainfall simulations. Journal of the Meteorological Society of Japan. Ser. II, 98(1), 93-113.
Liu, H., Taylor, A., & Kang, K. (2019). 3.8 Latest development in the NWS’extra-tropical storm surge model, and probabilistic extra-tropical storm surge model. 99th American Meteorological Society Annual Meeting,
Liu, H., Taylor, A., & Spring, M. (2018). Development of the nws’ probabilistic extra-tropical storm surge model and post processing methodology. Proceedings of the 98th AMS Annual Meeting, Austin, TX, USA,
Liu, P. L.-F., Cho, Y.-S., Briggs, M. J., Kanoglu, U., & Synolakis, C. E. (1995). Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302, 259-285.
Liu, P. L.-F., Cho, Y.-S., Yoon, S., & Seo, S. (1995). Numerical simulations of the 1960 Chilean tsunami propagation and inundation at Hilo, Hawaii. Tsunami: Progress in prediction, disaster prevention and warning, 99-115.
Liu, P. L.-F., Woo, S.-B., & Cho, Y.-S. (1998). Computer programs for tsunami propagation and inundation. Cornell University, 25.
Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2), 130-141.
Lynch, P., & Huang, X.-Y. (1992). Initialization of the HIRLAM model using a digital filter. Monthly Weather Review, 120(6), 1019-1034.
MDL, T. M. D. L. (2023). Technical Notices - Storm Surge. Retrieved March from https://vlab.noaa.gov/web/mdl/storm-surge-technical-notices
Mellor, G. L. (1998). Users guide for a three dimensional, primitive equation, numerical ocean model. Program in Atmospheric and Oceanic Sciences, Princeton University Princeton, NJ.
Molteni, F., Buizza, R., Palmer, T. N., & Petroliagis, T. (1996). The ECMWF ensemble prediction system: Methodology and validation. Quarterly Journal of the Royal Meteorological Society, 122(529), 73-119.
Mori, N., Yasuda, T., Arikawa, T., Kataoka, T., Nakajo, S., Suzuki, K., Yamanaka, Y., & Webb, A. (2019). 2018 Typhoon Jebi post-event survey of coastal damage in the Kansai region, Japan. Coastal Engineering Journal, 61(3), 278-294.
N. Gagnon, X.-X. D., P.L. Houtekamer, M. Charron, A. Erfani, S. Beauregard, B.Archambault, F. Petrucci and A. Giguère. (2013). Improvements to the Global Ensemble Prediction System (GEPS) from version 2.0.3 to version 3.0.0. https://collaboration.cmc.ec.gc.ca/cmc/cmoi/product_guide/docs/lib/op_systems/doc_opchanges/technote_geps300_20130213_e.pdf
Niedoroda, A., Resio, D., Toro, G., Divoky, D., Das, H., & Reed, C. (2010). Analysis of the coastal Mississippi storm surge hazard. Ocean Engineering, 37(1), 82-90.
Palmer, T. (2019). The ECMWF ensemble prediction system: Looking back (more than) 25 years and projecting forward 25 years. Quarterly Journal of the Royal Meteorological Society, 145, 12-24.
Peng, L., Wang, S.-T., Shieh, S.-L., Cheng, M.-D., & Yeh, T.-C. (2012). Surface track discontinuity of tropical cyclones crossing Taiwan: A statistical study. Monthly Weather Review, 140(1), 121-139.
Pérez, B., Brouwer, R., Beckers, J., Paradis, D., Balseiro, C., Lyons, K., Cure, M., Sotillo, M., Hackett, B., & Verlaan, M. (2012). ENSURF: multi-model sea level forecast–implementation and validation results for the IBIROOS and Western Mediterranean regions. Ocean Science, 8(2), 211-226.
Powell, M., Soukup, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., Dorst, N., & Axe, L. (2005). State of Florida hurricane loss projection model: Atmospheric science component. Journal of Wind Engineering and Industrial Aerodynamics, 93(8), 651-674.
Powell, M. D., Vickery, P. J., & Reinhold, T. A. (2003). Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422(6929), 279-283.
Raftery, A. E., Gneiting, T., Balabdaoui, F., & Polakowski, M. (2005). Using Bayesian model averaging to calibrate forecast ensembles. Monthly Weather Review, 133(5), 1155-1174.
Resio, D. T., Irish, J., & Cialone, M. (2009). A surge response function approach to coastal hazard assessment–part 1: basic concepts. Natural Hazards, 51, 163-182.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
SEA. (2005). Darwin TCWC Northern Region Storm Tide Prediction System - System Development Technical Report.
SEA. (2016). SEAtide V3.2 User Guide (Qld-Gulf).
Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404.
Shimozono, T., Tajima, Y., Kumagai, K., Arikawa, T., Oda, Y., Shigihara, Y., Mori, N., & Suzuki, T. (2020). Coastal impacts of super typhoon Hagibis on Greater Tokyo and Shizuoka areas, Japan. Coastal Engineering Journal, 62(2), 129-145.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR technical note, 475, 113.
Song, Y. K., Irish, J. L., & Udoh, I. E. (2012). Regional attributes of hurricane surge response functions for hazard assessment. Natural Hazards, 64, 1475-1490.
Sztobryn, M. (2003). Forecast of storm surge by means of artificial neural network. Journal of Sea Research, 49(4), 317-322.
Taflanidis, A. A., Kennedy, A. B., Westerink, J. J., Smith, J., Cheung, K. F., Hope, M., & Tanaka, S. (2013). Rapid assessment of wave and surge risk during landfalling hurricanes: Probabilistic approach. Journal of Waterway, Port, Coastal, and Ocean Engineering, 139(3), 171-182.
Taylor, A., Liu, H., & Schuster, R. (2015). 3.1 FINER WIND FIELD RESOLUTION FOR NWS’S EXTRA-TROPICAL STORM SURGE MODEL.
Taylor, A. A., & Glahn, B. (2008). Probabilistic guidance for hurricane storm surge. 19th Conference on probability and statistics,
Te Chow, V. (1959). Open channel hydraulics.
Tsai, Y.-L., Wu, T.-R., Terng, C.-T., & Chu, C.-H. (2018). The Development of Storm Surge Ensemble Forecasting System Combing with Meso-Scale Wrf Model. EGU General Assembly Conference Abstracts,
Tsai, Y.-L., Wu, T.-R., Yen, E., Lin, C.-Y., & Lin, S. C. (2022). Parallel-Computing Two-Way Grid-Nested Storm Surge Model with a Moving Boundary Scheme and Case Study of the 2013 Super Typhoon Haiyan. Water, 14(4).
Vickery, P., Skerlj, P., & Twisdale, L. (2000). Simulation of hurricane risk in the US using empirical track model. Journal of Structural Engineering, 126(10), 1222-1237.
Vickery, P. J., Skerlj, P., Steckley, A., & Twisdale, L. (2000). Hurricane wind field model for use in hurricane simulations. Journal of Structural Engineering, 126(10), 1203-1221.
Vickery, P. J., & Wadhera, D. (2008). Statistical models of Holland pressure profile parameter and radius to maximum winds of hurricanes from flight-level pressure and H* Wind data. Journal of Applied Meteorology and climatology, 47(10), 2497-2517.
Wei, M., Toth, Z., Wobus, R., & Zhu, Y. (2008). Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus A: Dynamic Meteorology and Oceanography. https://doi.org/10.1111/j.1600-0870.2007.00273.x
Wilks, D. (2011). On the reliability of the rank histogram. Monthly Weather Review, 139(1), 311-316.
WMO. (2012). Guidelines on ensemble prediction systems and forecasting. World Meteorological Organization Weather Climate and Water, 1091.
WMO. (2022). Typhoon Committee Operational Manual. Tropical Cyclone Programme Report No. TCP-23. Technical Report.
Wu, L., Lu, J., & Feng, X. (2023). Increased tropical cyclone intensification time in the western North Pacific over the past 56 years. Environmental Research Letters, 18(9), 094031.
Wu, L., Tian, W., Liu, Q., Cao, J., & Knaff, J. A. (2015). Implications of the Observed Relationship between Tropical Cyclone Size and Intensity over the Western North Pacific. Journal of Climate, 28(24), 9501-9506. https://doi.org/https://doi.org/10.1175/JCLI-D-15-0628.1
Xu, J., & Wang, Y. (2018). Dependence of Tropical Cyclone Intensification Rate on Sea Surface Temperature, Storm Intensity, and Size in the Western North Pacific. Weather and Forecasting, 33(2), 523-537. https://doi.org/https://doi.org/10.1175/WAF-D-17-0095.1
Yang, J., Lin, C.-y., Liu, H., Li, L., Wu, T.-r., Wang, P., Li, B., & Liu, P. L.-F. (2021). Effects of island topography on storm surge in Taiwan strait during Typhoon Maria. Journal of Waterway, Port, Coastal, and Ocean Engineering, 147(2), 04020057. https://doi.org/https://doi.org/10.1061/(ASCE)WW.1943-5460.0000619
Zhang, D., Zhang, H., Zheng, J., Cheng, X., Tian, D., & Chen, D. (2020). Changes in tropical-cyclone translation speed over the western North Pacific. Atmosphere, 11(1), 93.
Zhang, W. Z., Shi, F., Hong, H. S., Shang, S. P., & Kirby, J. T. (2010). Tide‐surge interaction intensified by the Taiwan Strait. Journal of Geophysical Research: Oceans, 115(C6).
ZHOU, H., TENG, M. H., LIN, P., GICA, E., & FENG, K. (2009). Predicting run-up of breaking and nonbreaking long waves by applying the Cornell COMCOT model. Nonlinear Wave Dynamics: Selected Papers of the Symposium Held in Honor of Philip LF Liu′s 60th Birthday,
Zieger, S., & Greenslade, D. (2021). A multi-resolution global wave model–AUSWAVE-G3 (Vol. 68).
李清勝. (1988). 台灣地區颱風路徑之預報分析. 大氣科學, 16(2), 133-140.
葉天降, 吳石吉, & 謝信良. (1998). 台灣附近颱風路徑預報校驗與統計方法之應用. 大氣科學, 26(3-4), 227-248.
謝志敏, 黃榮鑑, 許泰文, 陳聖學, & 吳一平. (2022). 潮位觀測與應用推估台灣海平面上升趨勢分析研究. 土木水利, 49(6), 5-14. https://doi.org/10.6653/MoCICHE.202212_49(6).0003
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明