博碩士論文 105888003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.189.189.4
姓名 黃信哲(Oscar Huang)  查詢紙本館藏   畢業系所 跨領域轉譯醫學研究所
論文名稱 幾何快速資料密度泛函轉換之理論開發以及於三維的人體姿勢辨識與追蹤、高維腫瘤影像病灶辨識與分割之研究
相關論文
★ 基於密度泛函理論的人體姿勢模態識別之非監督學習方法★ 舌紋分析的動態曝光方法
★ 整合Modbus與Websocket協定之聯網醫療資料採集嵌入式系統研製★ 比較 U-net 神經網路與資料密度泛函方法對於磁共振影像分割的效能
★ 使用YOLO架構在標準環境中進行動態舌頭影像偵測及切割★ 使用YOLO辨識金屬表面瑕疵
★ 使用深度學習結合快速資 料密度泛函轉換進行自動腦瘤切割★ 使用強化學習模擬抑制新冠肺炎疫情
★ 融合影像與加速度感測訊號的人體上部運動特徵視覺化之機械學習模型★ 組建細胞培養人造磁場微實驗平台
★ 以幾何特徵強化方法用於腦腫瘤影像辨識與分割之研究★ 標準CMOS製程之新型微機電麥克風驗證、濕式蝕刻加工製程開發暨量產製程研究
★ 靜磁場於癌細胞的生物效應★ 基於幾何深度學習之乳癌淋巴結轉移分類系統
★ 關節角度監測裝置應用在日常膝關節活動★ Using Reinforcement Learning to Support Outbreak Management and Spatiotemporal Analysis of COVID-19 Epidemiology in Japan
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們根據量子化學在研究高分子材料的理論基礎—密度泛函理論(Density Functional Theory)—上,開發了一種可討論無窮維度資料架構的半無監督(Semi-unsupervised) 的機械學習演算法。由於該方法被我們架構在微分幾何的數學架構之下, 並擁有深度學習當中的變分自編碼器 (Variational AutoEncoder) 的潛變空間 (Latent Space) 架構,因此我們稱之為幾何快速資料密度泛函轉換(Geometric Fast Data Density Functional Transform, g-fDDFT)。在理論印證的前期,我們使用 g-fDDFT 來協助辨識人體的動作模式。我們首先將動作的時序訊號映射到特定的偽物理空間中,先利用能量穩定理 (Energy Stability Principles) 決定最可能的資料群數 (Clustering Numbers),再透過尋找局部能量最低值 (Local Energy Minimum) 來確定對應於每個群(亦即不同動作狀態)的資料邊界 (Cluster Boundaries),其中資料的狀態移動方向和狀態間的過度區域即成為重要的動作辨識特徵。而不同於傳統方法,我們僅以一個三軸重力感測器收集資訊,透過結合動作特徵與感測器架構作為先驗資訊,實驗結果證實最可能的動作狀態可分類為日常生活中的四種常見人體姿勢,且動作誤差和雜訊不會對結果產生明顯影響。我們也將此方法用於模擬翻身情境,結果證實應用於老人和嬰兒翻身監控上之潛力。此外,我們進一步最佳化 g-fDDFT,並將印證實例轉至討論灰階的醫學影像矩陣同構映射至能量空間的方法,期待能藉此實現以非監督式方法辨識腦腫瘤的病灶形態。在不斷最佳化 g-fDDFT 理論架構時,我們引入了幾何深度學習 (geometric deep learning) 的概念架構和圖神經網路 (graph neural network, GNN) 的度規 (metrics) 方法。這兩者的理論整合,實踐了 g- fDDFT 的網格化密度泛函 (gridized density functional) 簡化方法,並建立了非監

督式的圖形特徵感知機制。而在最佳化的數學架構上,g-fDDFT 依然使用全域 卷積核 (Global Convolutional Kernels)來辨識與提取最可能的醫學影像的病灶邊界並加以分割。在 g-fDDFT 的模型架構中,我們所設計的變分自編碼器輔助模組(Variational AutoEncoder-assisted Module)能將原始卷積的計算複雜度從 ??(??3)降低至 ??(?? log ??),從而顯著加快全域卷積操作的速度。在理論印證時,我們使用各種公開資料集驗證模型的性能並討論其限制。在超大型 3D 資料集如 MACCAI 國際研討會中所提供的 BraTS 系列競賽的公開 MRI 腦腫瘤醫學影像資料集,每個病例的平均模型推論時間 (Inference Time) 約為 1.76 秒。我們所設計的網格化密度泛函具有活化能力 (Activation Capability), 且能與梯度上升 (Gradient Ascent) 操作產生交互作用並可用於分析操作產生的協同能力,因此可以模組化併入深度神經網路的自動化學習流程 (Pipeline) 中。理論架構上,我們也開發了幾何穩定性 (Geometric Stability) 與相似性收斂 (Similarity Convergence)之演算法來提高對病灶影像進行非監督式辨識和分割的準確性,並能達到傳統醫學影像深度神經網路之要求標準,我們的模型 Dice 分數的中位數高於 0.75。我們的實驗顯示,g-fDDFT 若與一個簡單神經網路協同作用,能使模型訓練時間(Training Time)和推論時間分別加快了 58% 和 51%,Dice 分數則提升至 0.9415。g-fDDFT 的這項優勢能促進跨學科應用和臨床研究中的快速計算建模。
摘要(英) We established an innovative approach for human motion recognition with the geometric fast data density functional transform (g-fDDFT). We mapped the temporal motion signals into a specific physical space and used energy stability principles to determine the most probable number of clusters. The clusters corresponded to different motion states, and their boundaries were identified by locating local energy minima. The direction of state migration and the transition regions between these states became key motion features. Unlike traditional methods, we used only a single tri-axial gravitational sensor for data collection. By integrating motion features and the sensor architecture as prior information, experimental results showed that the most probable motion states can be classified into four common human postures observed in daily life, with error motions and noise having minimal impact on the results. This method was also successfully applied in simulating turning-over scenarios, confirming its potential for monitoring the movements of elderly individuals and infants. Additionally, we optimized the theoretical framework of g-fDDFT, which isomorphically mapped gray- level medical image matrices onto energy spaces, enabling the unsupervised recognition of lesion morphology. By incorporating geometric deep learning (GDL) architecture and metrics from graph neural networks (GNN), the gridized density functionals of g-fDDFT established an unsupervised feature-aware mechanism. This mechanism uses global convolutional kernels to extract the most probable lesion boundaries and perform segmentation. The computational complexity was reduced from ??(??3) to ??(?? log ??) by the AutoEncoder-assisted module, significantly speeding up the global convolution operations. We validated the model′s performance using various open datasets and discussed its limitations. In large 3D datasets, the

average inference time for each case was 1.76 seconds. The gridized density functionals demonstrated activation capabilities that synergize with gradient ascent operations, allowing for modularization and embedding into the pipelines of deep neural networks. Algorithms for geometric stability and similarity convergence further enhanced unsupervised lesion recognition and segmentation accuracy, achieving performance standards comparable to conventional deep neural networks, with a median Dice score exceeding 0.75. Our experiments revealed that the synergy between fDDFT and a simple neural network improved training and inference times by 58% and 51%, respectively, and raised the Dice score to 0.9415. This enhancement facilitates rapid computational modeling in interdisciplinary applications and clinical research.
關鍵字(中) ★ 半無監督的機械學習演算法
★ 無監督的機械學習演算法
★ MRI 腦腫瘤醫學影像辨識
★ 快速推論時間
★ 深度神經網路的自動化學習流程
★ 自編碼器輔助模組
關鍵字(英) ★ Semi-unsupervised Machine learning algorithms
★ unsupervised Machine learning algorithms
★ MRI Brain Tumor Medical Image Identification
★ fast Inference Time
★ Automated learning for deep neural networks Pipeline
★ Variational AutoEncoder-assisted Module
論文目次 目錄
中文摘要 i
英文摘要 iii
致謝 v
目錄 vii
圖目錄 viii
表目錄 ix
ㄧ、緒論 1
二、研究內容與方法 10
2.1理論架構 10
2.2 動作偵測實驗架構 14
2.3 腦瘤分割實驗架構 17
三、實驗結果 25
3.1 人體動作識別與分類任務 25
3.2 無監督的腦腫瘤辨識與分割任務 31
3.2.1 3D腦瘤影像資料集之特徵感知辨識與分割 33
3.2.2 特徵感知分割之統計結果與低特徵圖型辨識之限制 36
3.2.3 fDDFT與深度學習模型之協同作用 39
四、討論 41
五、結論 44
參考文獻 45

圖目錄
圖 1 多粒子系統、完整圖和影像網格空間 R^2之間的對應關係 8
圖2 動作偵測實驗架構 15
圖3 g-fDDFT在人體資料辨識與分割的演算法流程圖 16
圖4 g-fDDFT 在腦腫瘤辨識與分割任務的演算法流程圖 19
圖5 G-sensor各感測軸之原始時間訊號 25
圖6 以g-fDDFT演算法進行仰臥至左側臥 (TL) 之動作估計分析 27
圖7 以g-fDDFT演算法進行仰臥至右側臥 (TR) 之動作估計分析 28
圖8 模擬老人和嬰兒翻身監控 30
圖9 有干擾情況下之表現FLAIR 影像 32
圖10相似性收斂強化演算法之演示 35
圖11 代表病例之準確性分佈與結構分析 38
?
表目錄
表 1 單純D-UNet與併用fDDFT之性能比較 40

?
參考文獻 參考文獻

[1] C. Chen, R. Jafari, and N. Kehtarnavaz, "A real-time human action recognition system using depth and inertial sensor fusion," IEEE Sensors Journal, vol. 16, no. 3, pp. 773- 781, 2015.
[2] Z. Qian et al., "Inverse piezoresistive nanocomposite sensors for identifying human sitting posture," Sensors, vol. 18, no. 6, p. 1745, 2018.
[3] X. Hui and E. C. Kan, "Monitoring vital signs over multiplexed radio by near-field coherent sensing," Nature Electronics, vol. 1, no. 1, pp. 74-78, 2018.
[4] H.-J. Tsai, T. B. Kuo, G. S. Lee, and C. C. Yang, "Efficacy of paced breathing for insomnia: enhances vagal activity and improves sleep quality," Psychophysiology, vol. 52, no. 3, pp. 388-396, 2015.
[5] T. B. Kuo, C.-H. Hong, I.-T. Hsieh, G.-S. Lee, and C. C. Yang, "Effects of cold exposure on autonomic changes during the last rapid eye movement sleep transition and morning blood pressure surge in humans," Sleep medicine, vol. 15, no. 8, pp. 986-997, 2014.
[6] M. Smole?, E. Ka?toch, P. Augustyniak, and P. Kowalski, "Wearable patient home monitoring based on ECG and ACC sensors," in 5th European Conference of the International Federation for Medical and Biological Engineering: 14–18 September 2011, Budapest, Hungary, 2012: Springer, pp. 941-944.
[7] V. A. Sagar et al., "Exercise-based rehabilitation for heart failure: systematic review and meta-analysis," Open heart, vol. 2, no. 1, p. e000163, 2015.
[8] V. Y. Ma, L. Chan, and K. J. Carruthers, "Incidence, prevalence, costs, and impact on disability of common conditions requiring rehabilitation in the United States: stroke, spinal cord injury, traumatic brain injury, multiple sclerosis, osteoarthritis, rheumatoid arthritis, limb loss, and back pain," Archives of physical medicine and rehabilitation, vol. 95, no. 5, pp. 986-995. e1, 2014.
[9] N. Capela, E. Lemaire, N. Baddour, M. Rudolf, N. Goljar, and H. Burger, "Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants," Journal of neuroengineering and rehabilitation, vol. 13, pp. 1-10, 2016.
[10] A. Shapi′i, N. N. Bahari, H. Arshad, N. A. M. Zin, and Z. R. Mahayuddin, "Rehabilitation exercise game model for post-stroke using Microsoft Kinect camera," in 2015 2nd International Conference on Biomedical Engineering (ICoBE), 2015: IEEE,
pp. 1-6.
[11] H. Sin and G. Lee, "Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia," American journal of physical medicine & rehabilitation, vol. 92, no. 10, pp. 871-880, 2013.
[12] T. Rose, C. S. Nam, and K. B. Chen, "Immersion of virtual reality for rehabilitation- Review," Applied ergonomics, vol. 69, pp. 153-161, 2018.

[13] M. Pfeifer et al., "Musculoskeletal rehabilitation in osteoporosis: a review," Journal of bone and mineral research, vol. 19, no. 8, pp. 1208-1214, 2004.
[14] H.-C. Chu, T.-H. Lee, L.-h. Chang, and C.-J. Li, "Modeling of location estimation for object tracking in WSN," Journal of Applied Mathematics, vol. 2013, no. 1, p. 541240, 2013.
[15] C. Wu, S. Huang, and C. Chen, "Method on Pattern Recognition of Various Limb Postures," J. Biomed. Syst. Emerg. Technol, vol. 5, p. 118, 2018.
[16] T. Sztyler and H. Stuckenschmidt, "On-body localization of wearable devices: An investigation of position-aware activity recognition," in 2016 IEEE international conference on pervasive computing and communications (PerCom), 2016: IEEE, pp. 1- 9.
[17] F. Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi, L. Oukhellou, and Y. Amirat, "Physical human activity recognition using wearable sensors," Sensors, vol. 15, no. 12, pp. 31314-31338, 2015.
[18] D. O. Olgu?n and A. S. Pentland, "Human activity recognition: Accuracy across common locations for wearable sensors," in Proceedings of 2006 10th IEEE international symposium on wearable computers, Montreux, Switzerland, 2006: Citeseer, pp. 11-14.
[19] A. Asokan, A. J. Pothen, and R. K. Vijayaraj, "ARMatron—A wearable gesture recognition glove: For control of robotic devices in disaster management and human rehabilitation," in 2016 International Conference on Robotics and Automation for Humanitarian Applications (RAHA), 2016: IEEE, pp. 1-5.
[20] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation," Robotics and Autonomous Systems, vol. 73, pp. 135-143, 2015.
[21] F. Zhang, X. Wang, Y. Yang, Y. Fu, and S. Wang, "A human-machine interface software based on android system for hand rehabilitation robot," in 2015 IEEE International Conference on Information and Automation, 2015: IEEE, pp. 625-630.
[22] J. Ga?ka, M. M?sior, M. Zaborski, and K. Barczewska, "Inertial motion sensing glove for sign language gesture acquisition and recognition," IEEE Sensors Journal, vol. 16, no. 16, pp. 6310-6316, 2016.
[23] S. R. D. Maryam and S. Payandeh, "A novel human posture estimation using single depth image from Kinect v2 sensor," in 2018 Annual IEEE International Systems Conference (SysCon), 2018: IEEE, pp. 1-7.
[24] M. Tarabini et al., "Monitoring the human posture in industrial environment: A feasibility study," in 2018 IEEE sensors applications symposium (SAS), 2018: IEEE, pp. 1-6.
[25] S.-R. Ke, H. L. U. Thuc, Y.-J. Lee, J.-N. Hwang, J.-H. Yoo, and K.-H. Choi, "A review on video-based human activity recognition," Computers, vol. 2, no. 2, pp. 88-131, 2013.

[26] C.-Y. Chiu, C.-C. Wu, Y.-C. Wu, M.-Y. Wu, S.-P. Chao, and S.-N. Yang, "Retrieval and constraint-based human posture reconstruction from a single image," Journal of Visual Communication and Image Representation, vol. 17, no. 4, pp. 892-915, 2006.
[27] T. Hachaj, M. R. Ogiela, and K. Koptyra, "Human actions recognition from motion capture recordings using signal resampling and pattern recognition methods," Annals of Operations Research, vol. 265, pp. 223-239, 2018.
[28] T. Hachaj, M. Piekarczyk, and M. R. Ogiela, "Human actions analysis: Templates generation, matching and visualization applied to motion capture of highly-skilled karate athletes," Sensors, vol. 17, no. 11, p. 2590, 2017.
[29] T. Hachaj and M. R. Ogiela, "The adaptation of GDL motion recognition system to sport and rehabilitation techniques analysis," Journal of Medical Systems, vol. 40, pp. 1- 9, 2016.
[30] T. Hachaj and M. R. Ogiela, "Human actions recognition on multimedia hardware using angle-based and coordinate-based features and multivariate continuous hidden Markov model classifier," Multimedia Tools and Applications, vol. 75, pp. 16265-16285, 2016.
[31] L. Liu, Y. Peng, S. Wang, M. Liu, and Z. Huang, "Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors," Information Sciences, vol. 340, pp. 41-57, 2016.
[32] Y. Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton based action recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1110-1118.
[33] S. Gaglio, G. L. Re, and M. Morana, "Human activity recognition process using 3-D posture data," IEEE Transactions on Human-Machine Systems, vol. 45, no. 5, pp. 586- 597, 2014.
[34] A. Jalal, S. Kamal, and D. Kim, "A depth video sensor-based life-logging human activity recognition system for elderly care in smart indoor environments," Sensors, vol. 14, no. 7, pp. 11735-11759, 2014.
[35] L. Xia, C.-C. Chen, and J. K. Aggarwal, "View invariant human action recognition using histograms of 3d joints," in 2012 IEEE computer society conference on computer vision and pattern recognition workshops, 2012: IEEE, pp. 20-27.
[36] J. Shotton et al., "Real-time human pose recognition in parts from single depth images,"
Communications of the ACM, vol. 56, no. 1, pp. 116-124, 2013.
[37] P. Bonizzi, J. M. Karel, O. Meste, and R. L. Peeters, "Singular spectrum decomposition: A new method for time series decomposition," Advances in Adaptive Data Analysis, vol. 6, no. 04, p. 1450011, 2014.
[38] M. Costa, A. L. Goldberger, and C.-K. Peng, "Multiscale entropy analysis of complex physiologic time series," Physical review letters, vol. 89, no. 6, p. 068102, 2002.
[39] M. Costa, A. L. Goldberger, and C.-K. Peng, "Multiscale entropy analysis of biological signals," Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, vol. 71, no. 2, p. 021906, 2005.

[40] M. D. Costa, C.-K. Peng, and A. L. Goldberger, "Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures," Cardiovascular Engineering, vol. 8, pp. 88-93, 2008.
[41] C.-C. Chen, H.-H. Juan, M.-Y. Tsai, and H. H.-S. Lu, "Unsupervised learning and pattern recognition of biological data structures with density functional theory and machine learning," Scientific reports, vol. 8, no. 1, p. 557, 2018.
[42] S. Bauer, R. Wiest, L.-P. Nolte, and M. Reyes, "A survey of MRI-based medical image analysis for brain tumor studies," Physics in Medicine & Biology, vol. 58, no. 13, p. R97, 2013.
[43] V. Rajinikanth, S. C. Satapathy, S. L. Fernandes, and S. Nachiappan, "Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization," Pattern Recognition Letters, vol. 94, pp. 87-95, 2017.
[44] Z. Ning, C. Tu, X. Di, Q. Feng, and Y. Zhang, "Deep cross-view co-regularized representation learning for glioma subtype identification," Medical Image Analysis, vol. 73, p. 102160, 2021.
[45] Z.-J. Su, T.-C. Chang, Y.-L. Tai, S.-J. Chang, and C.-C. Chen, "Attention u-net with dimension-hybridized fast data density functional theory for automatic brain tumor image segmentation," in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Revised Selected Papers, Part II 6, 2021:
Springer, pp. 81-92.
[46] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, "Geometric deep learning: going beyond euclidean data," IEEE Signal Processing Magazine, vol. 34, no. 4, pp. 18-42, 2017.
[47] M. Winkels and T. S. Cohen, "3D G-CNNs for pulmonary nodule detection," arXiv preprint arXiv:1804.04656, 2018.
[48] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling, "Gauge equivariant convolutional networks and the icosahedral CNN," in International conference on Machine learning, 2019: PMLR, pp. 1321-1330.
[49] Y. Zhou, J. Wu, S. Chen, and G. Chen, "Toward the exact exchange–correlation potential: A three-dimensional convolutional neural network construct," The journal of physical chemistry letters, vol. 10, no. 22, pp. 7264-7269, 2019.
[50] H. Manukian, Y. R. Pei, S. R. Bearden, and M. Di Ventra, "Mode-assisted unsupervised learning of restricted Boltzmann machines," Communications Physics, vol. 3, no. 1, p. 105, 2020.
[51] R. Meyer, M. Weichselbaum, and A. W. Hauser, "Machine learning approaches toward orbital-free density functional theory: Simultaneous training on the kinetic energy density functional and its functional derivative," Journal of chemical theory and computation, vol. 16, no. 9, pp. 5685-5694, 2020.
[52] A. J. Ballard et al., "Energy landscapes for machine learning," Physical Chemistry Chemical Physics, vol. 19, no. 20, pp. 12585-12603, 2017.

[53] Q. Zhou et al., "Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution," Nature communications, vol. 9, no. 1,
p. 2948, 2018.
[54] J. Wei et al., "Machine learning in materials science," InfoMat, vol. 1, no. 3, pp. 338- 358, 2019.
[55] H. Li, C. Collins, M. Tanha, G. J. Gordon, and D. J. Yaron, "A density functional tight binding layer for deep learning of chemical Hamiltonians," Journal of chemical theory and computation, vol. 14, no. 11, pp. 5764-5776, 2018.
[56] Y. Zhang et al., "Unsupervised discovery of solid-state lithium ion conductors," Nature communications, vol. 10, no. 1, p. 5260, 2019.
[57] T. Santos-Silva, P. Teixeira, C. Anquetil-Deck, and D. Cleaver, "Neural-network approach to modeling liquid crystals in complex confinement," Physical Review E, vol. 89, no. 5, p. 053316, 2014.
[58] M. N. Sakano et al., "Unsupervised learning-based multiscale model of thermochemistry in 1, 3, 5-trinitro-1, 3, 5-triazinane (RDX)," The Journal of Physical Chemistry A, vol. 124, no. 44, pp. 9141-9155, 2020.
[59] D. M. Packwood, "Exploring the configuration spaces of surface materials using time- dependent diffraction patterns and unsupervised learning," Scientific Reports, vol. 10, no. 1, p. 5868, 2020.
[60] M. Verriere et al., "Building surrogate models of nuclear density functional theory with Gaussian processes and autoencoders," Frontiers in Physics, vol. 10, p. 1028370, 2022.
[61] Y. Elbaz, D. Furman, and M. Caspary Toroker, "Modeling diffusion in functional materials: from density functional theory to artificial intelligence," Advanced Functional Materials, vol. 30, no. 18, p. 1900778, 2020.
[62] M. Kuban, S. Rigamonti, M. Scheidgen, and C. Draxl, "Density-of-states similarity descriptor for unsupervised learning from materials data," Scientific Data, vol. 9, no. 1,
p. 646, 2022.
[63] X. Wang, R. Girshick, A. Gupta, and K. He, "Non-local neural networks," in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 7794-7803.
[64] N. Watters, D. Zoran, T. Weber, P. Battaglia, R. Pascanu, and A. Tacchetti, "Visual interaction networks: Learning a physics simulator from video," Advances in neural information processing systems, vol. 30, 2017.
[65] C.-C. Chen, M.-Y. Tsai, M.-Z. Kao, and H. H.-S. Lu, "Medical image segmentation with adjustable computational complexity using data density functionals," Applied Sciences, vol. 9, no. 8, p. 1718, 2019.
[66] F.-S. Hsu et al., "Lightweight deep neural network embedded with stochastic variational inference loss function for fast detection of human postures," Entropy, vol. 25, no. 2, p. 336, 2023.

[67] B. C. Yeo, D. Kim, C. Kim, and S. S. Han, "Pattern learning electronic density of states," Scientific reports, vol. 9, no. 1, p. 5879, 2019.
[68] P. G. Mezey, "The holographic electron density theorem and quantum similarity measures," Molecular Physics, vol. 96, no. 2, pp. 169-178, 1999.
[69] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein, "Improving graph neural network expressivity via subgraph isomorphism counting," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 657-668, 2022.
[70] Y. L. Tai, S. J. Huang, C. C. Chen, and H. H. Lu, "Computational Complexity Reduction of Neural Networks of Brain Tumor Image Segmentation by Introducing Fermi-Dirac Correction Functions," Entropy (Basel), vol. 23, no. 2, Feb 11 2021, doi: 10.3390/e23020223.
[71] P. Hohenberg and W. Kohn, "Inhomogeneous electron gas," Physical review, vol. 136, no. 3B, p. B864, 1964.
[72] W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects," Physical review, vol. 140, no. 4A, p. A1133, 1965.
[73] C. J. Cramer and D. G. Truhlar, "Density functional theory for transition metals and transition metal chemistry," Physical Chemistry Chemical Physics, vol. 11, no. 46, pp. 10757-10816, 2009.
[74] J. Wu, "Density functional theory for chemical engineering: From capillarity to soft materials," AIChE journal, vol. 52, no. 3, pp. 1169-1193, 2006.
[75] M. S. Daw and M. I. Baskes, "Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals," Physical review letters, vol. 50, no. 17, p. 1285, 1983.
[76] S. Lebegue, T. Bjorkman, M. Klintenberg, R. M. Nieminen, and O. Eriksson, "Two- dimensional materials from data filtering and ab initio calculations," Physical Review X, vol. 3, no. 3, p. 031002, 2013.
[77] S. Grimme, J. Antony, T. Schwabe, and C. Muck-Lichtenfeld, "Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules," Organic & Biomolecular Chemistry, vol. 5, no. 5, pp. 741-758, 2007.
[78] K. E. Riley, M. Pitonak, P. Jurecka, and P. Hobza, "Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories," Chemical Reviews, vol. 110, no. 9, pp. 5023- 5063, 2010.
[79] F. Neese, "Prediction of molecular properties and molecular spectroscopy with density functional theory: From fundamental theory to exchange-coupling," Coordination Chemistry Reviews, vol. 253, no. 5-6, pp. 526-563, 2009.
[80] A. Zupan, K. Burke, M. Ernzerhof, and J. P. Perdew, "Distributions and averages of electron density parameters: Explaining the effects of gradient corrections," The Journal of chemical physics, vol. 106, no. 24, pp. 10184-10193, 1997.

[81] A. Zupan, J. P. Perdew, K. Burke, and M. Causa, "Density?gradient analysis for density functional theory: Application to atoms," International journal of quantum chemistry, vol. 61, no. 5, pp. 835-845, 1997.
[82] A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, and A. Vullikanti, "Mathematical models for covid-19 pandemic: a comparative analysis," Journal of the Indian Institute of Science, vol. 100, no. 4, pp. 793-807, 2020.
[83] W. D. Elliott and J. Board, John A, "Fast Fourier transform accelerated fast multipole algorithm," SIAM Journal on Scientific Computing, vol. 17, no. 2, pp. 398-415, 1996.
[84] S.-J. Huang, C.-J. Wu, and C.-C. Chen, "Pattern recognition of human postures using the data density functional method," Applied Sciences, vol. 8, no. 9, p. 1615, 2018.
[85] Y. C. Lin, I. Te Hsieh, and W. T. Lin, "Implementation of Cloud Computing Healthcare based on Xenon uploading System and Hilbert Huang Transform," Lecture Notes on Wireless Healthcare Research, vol. 115.
[86] K. Patrick and M.-c. Su, Lecture Notes on Wireless Healthcare Research. University of Taiwan System Press, 2013.
[87] A. Glowacz, W. Glowacz, Z. Glowacz, and J. Kozik, "Early fault diagnosis of bearing and stator faults of the single-phase induction motor using acoustic signals," Measurement, vol. 113, pp. 1-9, 2018.
[88] J. P?ibil, A. P?ibilova, and I. Frollo, "Two Methods of Automatic Evaluation of Speech Signal Enhancement Recorded in the Open-Air MRI Environment," Measurement Science Review, vol. 17, no. 6, pp. 257-263, 2017.
[89] J. P?ibil, A. P?ibilova, and I. Frollo, "Automatic GMM-Based evaluation of noise suppression in the speech signal recorded during phonation in the open-air MRI," in 2017 40th International Conference on Telecommunications and Signal Processing (TSP), 2017: IEEE, pp. 350-353.
[90] Y.-D. Zhang and L. Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, vol. 130, pp. 369-388, 2012.
[91] A. Agrawal and R. Bhardwaj, "Probability of COVID-19 infection by cough of a normal person and a super-spreader," Phys Fluids (1994), vol. 33, no. 3, p. 031704, Mar 1 2021, doi: 10.1063/5.0041596.
[92] B. H. Menze et al., "The multimodal brain tumor image segmentation benchmark (BRATS)," IEEE transactions on medical imaging, vol. 34, no. 10, pp. 1993-2024, 2014.
[93] S. Bakas et al., "Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features," Scientific data, vol. 4, no. 1, pp. 1-13, 2017.
[94] S. Bakas et al., "Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge," arXiv preprint arXiv:1811.02629, 2018.

[95] Y. Zhou, W. Huang, P. Dong, Y. Xia, and S. Wang, "D-UNet: a dimension-fusion U shape network for chronic stroke lesion segmentation," IEEE/ACM transactions on computational biology and bioinformatics, vol. 18, no. 3, pp. 940-950, 2019.
指導教授 陳健章(Chien-Chang Chen) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明