參考文獻 |
[1] H. Becquerel, ’Emission de radiation nouvelles par l’uranium m’etallique, Comptes
Rendus Physique 122 (1986) 1086.
[2] T. Wulf, Observations on the radiation of high penetration power on the Eiffel
tower, Physikalische Zeitschrift 11(811), (1910) 2155-304.
[3] A. Gockel, On the invasive radiation in the atmosphere, Physikalische Zeitschrift
10 (1909) 845-847.
[4] V. Hess. On the observations of the penetrating radiation during seven balloon
flights, arXiv:1808.02927 (2018).
[5] Y. Sekido and H. Elliot, Early history of cosmic ray studies: Personal reminiscences
with old photographs, Springer Science and Business Media 118 (2012).
[6] W. Kolhoster, Messungen der durchdringenden Strahlung im Freiballon in grosseren
Hohen, Physikalische Zeitschrift 14 (1913) 1153-1156.
[7] R. A. Millikan and I. S. Bowen, High-frequency rays of cosmic origin I. Sounding
balloon observations at extreme altitudes, Physical Review 27(4) (1926) 353.
[8] C. D. Anderson, The positive electron, Physical Review, 43(6) (1933) 491.
[9] S. H, Neddermeyer and C. D. Anderson, Note on the nature of cosmic-ray particles,
Physical Review 51(10) (1937) 884.
[10] C. M. G. Lattes, G. P. S. Occhialini and C. F. Powell, Observations on the tracks
of slow mesons in photographic emulsions, Nature 160(4067) (1947) 486-492.
[11] P. A. M. Dirac, Quantised singularities in the electromagnetic field. Proceedings
of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, 133(821) (1931) 60-72.
[12] B. Rossi, Interpretation of cosmic-ray phenomena, Reviews of Modern Physics
20(3) (1948) 537.
115
[13] PAMELA Collaboration, et al., Ten years of PAMELA in space, La Rivista del
Nuovo Cimento 40 (2017) 43-522.
[14] S. Torii, P. S. Marrocchesi, et al., The CALorimetric Electron Telescope (CALET)
on the International Space Station, Advances in Space Research 64(12) (2019)
2531-2537.
[15] J. Chang, G. Ambrosi, Q. An, et al., The DArk Matter Particle Explorer mission,
Astroparticle Physics 95 (2017) 6-24.
[16] D. Gora, The Pierre Auger Observatory: review of latest results and perspectives,
Universe 4(11) (2018) 128.
[17] E. W. Apel, J. C. Arteaga, A. Badea, et al., The KASCADE-grande experiment,
Nuclear Instruments and Methods in Physics Research Section A: accelerators,
spectrometers, detectors and associated equipment 620(2-3) (2014) 202-216.
[18] N. Budnev, I. Astapov, N. Barbashina, et al., The TAIGA experiment: From
cosmic-ray to gamma-ray astronomy in the Tunka valley, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 845 (2017) 330-333.
[19] T. K. Gaisser, R. Engel and E. Resconi, Cosmic rays and particle physics, Cam-
bridge University Press (2016).
[20] K. A. Eriksen, et al., Evidence for particle acceleration to the knee of the cosmic
ray spectrum in Tycho’s supernova remnant, The Astrophysical Journal Letters
728(2) (2011) L28.
[21] D. Caprioli, Cosmic-ray acceleration and propagation, arXiv:1510.07042 (2015).
[22] J. R. H‥orandel, The composition of cosmic rays at the knee. American Institute
of Physics (AIP) Conference Proceedings 1516(1) (2013) 185-194.
[23] G. Giacinti, M. Kachelries, and D. V. Semikoz, Escape model for Galactic cosmic
rays and an early extragalactic transition, Physical Review D 91(8) (2015) 083009.
[24] S. Mollerach and E. Roulet, A scenario for the Galactic cosmic rays between
the knee and the second-knee, Journal of Cosmology and Astroparticle Physics
2019(03) (2019) 017.
[25] R. U. Abbasi, et al., Observation of the ankle and evidence for a high-energy break
in the cosmic ray spectrum, Physics Letters B 619(3-4) (2005) 271-280.
116
[26] J. Abraham, et al., Correlation of the highest-energy cosmic rays with nearby
extragalactic objects, Science 318(5852) (2007) 938-943.
[27] HRFE Collaboration, et al., First observation of the Greisen-Zatsepin-Kuzmin
suppression, Physical review letters 100(10) (2008) 101101.
[28] A. Aab, et al, Inferences on mass composition and tests of hadronic interactions
from 0.3 to 100 EeV using the water-Cherenkov detectors of the Pierre Auger Ob-
servatory, Physical Review D 96(12), (2017) 122003.
[29] R. Hillier, Gamma ray astronomy, Oxford Studies in Physics, Clarendon Press
(1984).
[30] B. T. Draine, Physics of the interstellar and intergalactic medium (Vol. 19),
Princeton University Press (2010).
[31] E. Vanhollebeke, M. A. T. Groenewegen and L. Stellar populations in the Galactic
bulge-Modelling the Galactic bulge with TRILEGAL., Astronomy & Astrophysics
498(1) (2009) 95-107.
[32] D. J. Majaess, Concerning the Distance to the Center of the Milky Way and its
Structure., arXiv preprint 1002.2743 (2010).
[33] L. S. Sparke and J. S. Gallagher III, Galaxies in the universe: an introduction.
Cambridge University Press (2007).
[34] R. Cowsik, et al., Steady state of cosmic-ray nuclei—Their spectral shape and path
length at low energies, Physical Review 158(5) (1967) 1238.
[35] R. Cowsik and E. W. Wilson, The nested leaky-box model for Galactic cosmic
rays, In Proceedings from the 14th International Cosmic Ray Conference 2 (OG
Session) (1975) 659.
[36] F. C. Jones, et al., The modified weighted slab technique: models and results, The
Astrophysical Journal 547(1) (2001) 264.
[37] A. W. Strong, et al., GALPROP: Code for cosmic-ray transport and diffuse emis-
sion production, Astrophysics Source Code Library (2010) 1010.028.
[38] G. Di Bernardo, et al., Unified interpretation of cosmic ray nuclei and antiproton
recent measurements, Astroparticle Physics, 34(5) (2010) 274-283.
[39] D. Maurin, USINE: a new public cosmic ray propagation code Basic phenomenol-
ogy, sample results, and a bit of USINE, In Cosmic Rays for Particle and Astropar-
ticle Physics (2011) 420-434.
117
[40] M. Aguilar, et al., Precision measurement of the boron to carbon flux ratio in
cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the
international space station, Physical review letters 117(23) (2016) 231102.
[41] R. Cowsik and T. Madziwa-Nussinov, Spectral intensities of antiprotons and the
nested leaky-box model for cosmic rays in the Galaxy, The Astrophysical Journal
827(2) (2016) 119.
[42] N. E. Yanasak, et al., Measurement of the secondary radionuclides 10Be, 26Al, 36Cl,
54Mn, and 14C and implications for the galactic cosmic-ray age, The Astrophysical
Journal 563(2) (2001) 768.
[43] E. Fermi, On the origin of the cosmic radiation, Physical review 75(8) (1949)
1169.
[44] L. A. Anchordoqui, Ultrahigh energy cosmic rays: Facts, myths, and legends,
arXiv:1104.0509 (2011).
[45] M. Aguilar, et al., Properties of a new group of cosmic nuclei: results from the
alpha magnetic spectrometer on sodium, aluminum, and nitrogen, Physical review
letters 127(2) (2021) 021101.
[46] W. Baade and F. Zwicky, Cosmic rays from super-novae, Proceedings of the Na-
tional Academy of Sciences 20(5) (1934) 259-263.
[47] I. G. Usoskin, A history of solar activity over millennia, Living Reviews in Solar
Physics 14(1) (2017) 3.
[48] B. C. Low, Solar activity and the corona, Solar Physics 167 (1996) 217-265.
[49] M. S. Potgieter, Solar modulation of cosmic rays, Living Reviews in Solar Physics
10 (2013) 1-66.
[50] B. A. Buffett, Earth’s core and the geodynamo, Science 288(5473) (2000) 2007-
2012.
[51] M. Schulz, The magnetosphere, Geomagnetism (1991).
[52] J. A. Van Allen, et al., Observation of high intensity radiation by satellites 1958
Alpha and Gamma, Journal of Jet Propulsion (28(9) (1958) 588-592.
[53] M. Schulz and L. J. Lanzerotti, Particle diffusion in the radiation belts, Springer
Science and Business Media 7 (2012).
[54] D. N. Baker, et al., A long-lived relativistic electron storage ring embedded in
Earth’s outer Van Allen belt, Science 340(6129) (2013) 186-190.
118
[55] R. Ecoffet, Overview of in-orbit radiation induced spacecraft anomalies, Institute
of Electrical and Electronics Engineers (IEEE) Transactions on Nuclear Science
60(3) (2013) 1791-1815.
[56] M. Tafazoli, A study of on-orbit spacecraft failures, Acta Astronautica 64(2-3)
(2009) 195-205.
[57] J. Restier-Verlet, et al., Radiation on earth or in space: what does it change?,
International Journal of Molecular Sciences 22(7) (2021) 3739.
[58] J. C. Mcphee and J. B. Charles. Human health and performance risks of space
exploration missions: evidence reviewed by the NASA human research program, US
National Aeronautics & Space Administration 3405 (2009).
[59] F. A. Cucinotta, et al., Space radiation and cataracts in astronauts, Radiation
research 156(5) (2001) 460-466.
[60] R. Reynolds, et al., Cancer incidence and mortality in the USA Astronaut Corps,
1959–2017, Occupational and Environmental Medicine 78 (2021) 869-875.
[61] P. Alken, E. Th’ebault, C. D. Beggan, et al., International Geomagnetic Ref-
erence Field: the thirteenth generation, Earth Planets Space 73(49) (2021).
https://doi.org/10.1186/s40623-020-01288-x
[62] M. Walt, Introduction to geomagnetically trapped radiation, Cambridge Atmo-
spheric and Space Science Series 10 (1994).
[63] N. Y. Ganushkina, M. W. Liemohn and S. Dubyagin, Current systems in the
Earth’s magnetosphere, Reviews of Geophysics 56(2) (2018) 309-332.
[64] H. E. Koskinen and E. K. Kilpua, Physics of Earth’s radiation belts: Theory and
observations, Springer Nature (2022) 54.
[65] J. G. Roederer and H. Zhang, Dynamics of magnetically trapped particles, Astro-
physics and Space Science Library 403 (2014) 72.
[66] M. Regi, ULF power fluctuations in the solar-wind parameters and their relation-
ship with the relativistic electron flux at the geosynchronous orbit, Il Nuovo Cimento
100.285 (2016) 39.
[67] M. Aguilar, et al., The Alpha Magnetic Spectrometer (AMS) on the International
Space Station: Part I–results from the test flight on the space shuttle, Physics
Reports 366(6) (2002) 331-405.
119
[68] K. L‥ubelsmeyer, et al., Upgrade of the Alpha Magnetic Spectrometer (AMS-02)
for long-term operation on the International Space Station (ISS), Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 654(1) (2011) 639-648.
[69] M. Aguilar, et al., The Alpha Magnetic Spectrometer (AMS) on the international
space station: Part II—Results from the first seven years, Physics reports 894
(2021) 1-116.
[70] G. Ambrosi, et al., Alignment of the AMS-02 silicon Tracker, In 33rd International
Cosmic Ray Conference (2013) 570.
[71] P. Saouter, Nuclei identification with the AMS-02 silicon tracker and measurement
of cosmic ray nuclei fluxes, Doctoral Thesis (2014).
[72] S. Natale and S. Schael, The AMS-02 tracker alignment system: design and per-
formance, In Proceedings of the 31st International Cosmic Ray Conference ( L’od’z)
(2009).
[73] J. L. Bazo, et al., In-flight performance of the AMS-02 silicon tracker, Journal of
Physics: Conference Series, IOP Publishing 409(1) (2013) 012032.
[74] J. van Es, et al., AMS-02 tracker thermal control cooling system commissioning
and operational results, In 43rd International Conference on Environmental Sys-
tems (2013) 3389.
[75] Y. M. Yu, et al., Design and application of thermal mass flow meter in space,
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 950 (2020) 163003.
[76] Y. M. Yu, et al., Testing of CO2 on-orbit fill/refill for the upgraded tracker thermal
pump system in the Alpha Magnetic Spectrometer, Applied Thermal Engineering
178 (2020) 115558.
[77] B. Alpat, et al., The internal alignment and position resolution of the AMS-02
silicon tracker determined with cosmic-ray muons, Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 613(2) (2010) 207-217.
[78] G. Ambrosi, et al., AMS-02 Track reconstruction and rigidity measurement, 33rd
International Cosmic Ray Conference (2013).
[79] Y. Jia, et al., Nuclei charge measurement by the Alpha Magnetic Spectrometer sil-
icon tracker, Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment 972 (2020) 164169.
120
[80] P. von Doetinchem, et al., The Anticoincidence Counter System of AMS-02,
arXiv:0906.1068 (2009).
[81] T. Bruch and W. Wallraff, The Anti-Coincidence Counter shield of the AMS
tracker, Nuclear Instruments and Methods in Physics Research Section A: Acceler-
ators, Spectrometers, Detectors and Associated Equipment 572(1) (2007) 505-507.
[82] V. Bindi, et al., Calibration and performance of the AMS-02 time of flight detector
in space, Nuclear Instruments and Methods in Physics Research Section A: Accel-
erators, Spectrometers, Detectors and Associated Equipment 743 (2014) 22-29.
[83] A. Basili, The TOF-ACC flight electronics for the fast trigger and time of flight of
the AMS-02 cosmic ray spectrometer, Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 707 (2013) 99-113.
[84] V. Bindi, et al., The AMS-02 time of flight (TOF) system: construction and
overall performances in space, Proceedings of the 33rd International Cosmic Rays
Conference, Rio Janeiro, Brazil (2013).
[85] T. Kirn, et al., The AMS-02 TRD on the international space station, Nuclear In-
struments and Methods in Physics Research Section A: accelerators, spectrometers,
detectors and associated equipment, 706 (2013) 43-47.
[86] T. Kirn, The AMS-02 transition radiation detector, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 581(1-2) (2007) 156-159.
[87] M. S. Krafczyk, A precision measurement of the cosmic ray positron fraction on
the international space station, Massachusetts Institute of Technology, Doctoral
Thesis (2016).
[88] H. Gast, et al., Identification of cosmic-ray positrons with the transition radiation
detector of the AMS experiment on the International Space Station, 33rd Interna-
tional Cosmic Ray Conference (2013).
[89] F. Giovacchini, et al., Performance in space of the AMS-02 RICH detector, Nu-
clear Instruments and Methods in Physics Research Section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 766 (2014) 57-60.
[90] H. Liu, The RICH detector of AMS-02: 5 years of operation in space, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment 876 (2017) 5-8.
121
[91] F. Giovacchini, et al., Space application: The AMS RICH, Nuclear Instruments
and Methods in Physics Research Section A: Accelerators, Spectrometers, Detec-
tors and Associated Equipment 970 (2020) 163657.
[92] G. Gallucci, Performance of the AMS-02 Electromagnetic Calorimeter in Space,
In Journal of Physics: Conference Series 587(1) (2015) 012028. IOP Publishing.
[93] C. Adloff, et al., The AMS-02 lead-scintillating fibers Electromagnetic Calorime-
ter, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment 714 (2013) 147-154.
[94] S. Di Falco, Performance of the AMS-02 electromagnetic calorimeter in space,
33rd International Cosmic Ray Conference (2013) 562.
[95] A. Basili, et al., The TOF-ACC flight electronics for the fast trigger and time of
flight of the AMS-02 cosmic ray spectrometer, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 707 (2013) 99-113.
[96] A. Kounine. AMS experiment on the International Space Station, American Phys-
ical Society Northwest Section Meeting Abstracts 13 (2011) G1-002.
[97] A. Lebedev. The AMS-02 Electronics System, In 29th International Cosmic Ray
Conference (ICRC29) 3 (2005) 377.
[98] B. Bertucci, et al., The AMS-02 detector operation in space, Proceedings of Science
(PoS) EPSHEP2011 67 (2011).
[99] S. Agostinelli, et al., GEANT4–a simulation toolkit, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 506(3) (2003) 250-303.
[100] J. Allison, et al., Geant4 developments and applications, Institute of Electrical
and Electronics Engineers (IEEE) Transactions on nuclear science 53(1) (2006)
270-278.
[101] J. Allison, et al., Recent developments in Geant4, Nuclear Instruments and Meth-
ods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 835 (2016) 186-225.
[102] J. D. Sullivan, Geometric factor and directional response of single and multi-
element particle telescopes, Nuclear Instruments and methods 95(1) (1971) 5-11.
122
[103] E. Fehlberg, New high-order Runge-Kutta formulas with step size control for
systems of first-and second-order differential equations, Journal of Applied Mathe-
matics and Mechanics/Zeitschrift f‥ur Angewandte Mathematik und Mechanik 44
(S1 S1) (1964) T17-T29.
[104] J. R. Cummings, et al., New evidence for geomagnetically trapped anomalous
cosmic rays, Geophysical research letters 20(18) (1993) 2003-2006.
[105] V. Pierrard, S. Benck, E. Botek, et al., Proton flux variations during Solar En-
ergetic Particle Events, minimum and maximum solar activity, and splitting of the
proton belt in the South Atlantic Anomaly, Journal of Geophysical Research: Space
Physics 128(5) (2023) e2022JA031202.
[106] V. Pierrard, G. Lopez Rosson, K. Borremans, et al., The energetic particle tele-
scope: first results, Space Science Reviews 184 (2014) 87-106.
[107] A. Bruno, et al., Trapped protons in SAA measured by the PAMELA experiment,
Proceedings of the 32nd International Cosmic Ray Conference, Institute of High
Energy Physics 6 (2011) 82-85. |