博碩士論文 106225015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.146.221.249
姓名 林庭羽(Ting-yu Lin)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(A shrinkage robust ridge estimator with an intercept term)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Likelihood inference on bivariate competing risks models under the Pareto distribution★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models
★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models★ Copula-based Markov chain model with binomial data
★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 如果數據包含異常值與多重共線性時,則通常相較於最小平⽅法會選用 Ridge M-estimator(Silvapulle 1991)。因為當數據同時具有異常值與多重共線性的情況下,Ridge M-estimator 會有較小的MSE。許多的估計量,例如:Pretest M-estimators, Stein-type shrinkage M-estimators,都類似Ridge M-estimator。然⽽現在所有的ridge estimators 和M-estimators 都沒有考慮截距項的收縮估計。因此存在改進現有估計量的空間,可透過改進截距項的估計⽽達成。在本⽂中,我們透過引⼊截距項的估計⽅法,在線性模型中引⼊新的 robust estimators 的估計。為了說明,我們分析了從數據提取系統(KGUSBADES)提供的Nikkei NEEDS 公司財務數據。本論⽂是與Kwansei Gakuin ⼤學的Jimichi Masayuki 博⼠及其同事合作的⼀部分。但是,所有統計分析都是由作者進⾏的。
摘要(英) If the data contains outliers and multicollinearity, the ridge M-estimator (Silvapulle 1991) is the preferred estimator to the usual least square estimator. In fact, the ridge M-estimator has the smaller mean square error in the presence of outliners and multicollinearity. Many other estimators, such as the pretest M-estimators and Stein-type shrinkage M-estimators follow similar approaches to the ridge M-estimator. However, all the existing ridge and M-estimators do not consider shrinkage
estimation for the intercept term. Hence, there is a room for improving the existing estimators by improving the estimator of the intercept. In this thesis, we introduce new robust estimators of regression coefficients in a linear model by introducing a pretest estimation method for an intercept. For illustration, we analyze the Nikkei NEEDS corporate finance data that are provided from the
data-extraction system (KGUSBADES). This thesis is part of collaboration with Dr. Jimichi Masayuki and his
olleagues in Kwansei Gakuin University. However, all the statistical analyses are conducted by the author.
關鍵字(中) ★ 異常值
★ 多重共線性
★ 影響函數
★ 脊迴歸
關鍵字(英) ★ Influence function
★ Multicollinearity
★ Outlier
★ Robust estimator
★ Ridge estimator
論文目次 1. Introduction ……………………………………………...………………………....4
2. Background …………………………………………………………...……………………….5
3. Proposed Method ………………………………………………………………………… 16
4. Simulation …………………………………………………………………………….....18
5. Data analysis ……………………………………………………………...….…….24
6. Conclusion …………………………………………………………………...…………..29
7. Appendix …………………………………………………………………...…………....30
8. References …………………………………………………………………...…………..33
參考文獻 Andrews DF, Bickel PJ, Hampel FR, Huber PJ, Rogers WH, Tukey JW (1972) Robust Estimates of
Location: Survey and Advances. Princeton University Press, USA.
Askin RG, Montgomery DC (1980) Augmented robust estimation. Technometrics, 22, 333–341.
Askin RG, Montgomery DC (1984) An analysis of condtrained robust regression estimators.
Navoal Logist Q, 32, 283–296.
Beaton AE, Tukey JW (1974) The fitting of power series, meaning polynomials, illustrated on band
spectroscopic data, Technometrics, 16, 147 – 185.
Chen AC, Emura T (2017) A modified Liu-type estimator with an intercept term under mixture
experiments, Communications in Statistics-Theory and Methods, 46, 6645-67
Devlin SJ, Gnanadesikan R, Kettenring JR (1975) Robust estimation and outlier detection with
correlation coefficients. Biometrika, 62, 531-545.
Emura T, Matsui S, Chen HY (2019) compound.Cox: univariate feature selection and compound
covariate for predicting survival, Computer Methods and Program in Biomedicine, 168, 21-37
Golub GH, Heath M and Wahba G (1979) Generalized cross-validation as a method for choosing a
good ridge parameter, Technometrics, 21, 215-223
Hampel F (1974) The influence curve and its role in estimation. Journal of the American Statistical
Association, 69, 383-393.
Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning, 2nd edn. Springer,
New York.
Hinkley DV (1977) Jackknifing in unbalanced situations. Technometrics, 19, 285-292.
Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for non-orthogonal problems.
Technometrics, 12, 55-67.
Hoerl AE, Kennard RW, Baldwin KF (1975) Ridge regression: some simulations. Communications
in Statistics, 42,105-123.
Huang YF, Hwang CH (2013) Compare of the influence measures in linear regression models.
Journal of the Chinese Statistical Association, 51, 225-244.
Huber PJ (1981) Robust statistic. Wiley, Hoboken.
Huber PJ (1964) Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics,
35, 73-101.
Jadhav NH, Kashid DN (2011) A jackknifed ridge M-estimator for regression model with
multicollinearity and outliers. Journal of Statistical Theory and Practice, 5, 659-673.
James W, Stein C (1961) Estimation with quadratic loss. In: Proceedings of the Fourth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1: contributions to the Theory
of Statistics, 361–379, University of California Press, Berkeley.
Jimichi, M and Inagaki, N (1993) Centering and scaling in ridge regression. Statistical Science and
Data Analysis, 3, 77-86.
Jimichi, M (2005) Improvement of regression estimators by shrinkage under multicollinearity and
its feasibility. Ph.D. Thesis. Osaka University, Japan.
Jimichi, M (2008) Exact moments of feasible generalized ridge regression estimator and numerical
evaluations. Journal of the Japanese Society of Computationl Statistics, 21, 1–20.
Jimichi, M (2010) Building of financial database servers. Technical report,
http://kgur.kwansei.ac.jp/dspace/handle/10236/6013, ISBN: 9784990553005
34
Jimichi, M (2016). Shrinkage regression estimators and their feasibilities. Kwansei Gakuin
University Press.
Kan B, Alpu O, Yazici B (2013) Robust ridge and robust liu estimator for regression based on the
lts estimator. Journal of Applied Statistics, 40, 644–655.
Lawrence KD, Marsh LC (1984) Robust ridge estimation methods for predicting US coal mining
fatalities. Commun Stat Theory Methods, 13, 139–149.
McDonald GC, Galarneau DI (2012) A monte carlo evaluation of some ridge-type estimators.
Journal of the American Statistical Association, 70, 407–416.
Michimae H, Yoshida A, Emura T, (2018) Reconsidering the estimation of costs of phenotypic
plasticity using the robust ridge estimator, Ecological Informatics, 44, 7-20.
Montgomery DC, Askin RG (1981) Problems of nonnormality andmulticollinearity for
forecastingmethods based on least squares. AIIE Trans, 13, 102–115.
Montgomery DC, Peck, EA, Vining GG (2012) Introduction to Linear Regression Analysis. Wiley,
Canada.
Norouzirad M, Arashi M (2017) Preliminary test and Stein-type shrinkage ridge estimators in
robust regression. Statistical Papers. http://doi.org/10.1007/s00362-017-0899-3
Pfaffenberger RC, Dielman TE (1984) A modified ridge regression estimator using the least
absolute value criterion in the multiple linear regression model. Proceedings of the American
Institute for Decision Sciences, 791–793.
Pfaffenberger RC, Dielman TE (1985) A comparison of robust ridge estimators. Proceedings of the
American Statistical Association Business and Economic Statistics Section, 631–635.
Saleh AKME, Shiraishi T (1989) On some r and m estimators of regression parameters under
uncertain restriction. Journal of the Japan Statistical society, 19, 129-137.
Saleh AKME (2006) Theory of preliminary test and Stein-type estimation with applications. Wiley,
Hoboken.
Silvapulle MJ (1991) Robust ridge regression based on an M-estimator. Australian Journal of
Statistics, 33, 319-333.
Susanti Y, Pratiwi H, Sulistijowati S, Liana T (2014) M estimation, S estimation, and MM
estimation in robust regression. International Journal of Pure and Applied Mathematics, 91,
349–360.
Tabatabaey SMM, Kibria BMG, Saleh AKME (2004a) Estimation strategies for parameters of the
linear regression models with spherically symmetric distribution. Journal of Statistical
Mechanics, 38, 13-81.
Tukey JM (1977) Exploratory Data Analysis, Addison-Wesley.
Wong KY, Chiu SN (2015) An iterative approach to minimize the mean squared error in ridge
regression. Computational Statistics, 30, 625-639.
Yang SP, Emura T (2017) A Bayesian approach with generalized ridge estimation for
high-dimensional regression and testing. Communications in Statistics-Simulation and
Computation, 46, 6083-6105.
指導教授 江村剛志(Takeshi Emura) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明