博碩士論文 106226033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.7.253
姓名 曾品嘉(Pin-Chia Tseng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 反式雙鈣鈦礦MAxCs1-xPb(IxBr1-x)3薄膜太陽能電池之特性研究
(Investigations of Inverted-type Double Perovskite MAxCs1-xPb(IxBr1-x)3 Thin Film Solar Cells)
相關論文
★ 反溶劑滴入時間對鈣鈦礦薄膜形成之影響與其光伏電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) CH3NH3PbI3鈣鈦礦薄膜太陽能電池的光電轉換效率已達到 24.2%,全球的科學家正透過材料改質來改善此類太陽能電池的穩定性問題,在這個論文,我們選擇雙鈣鈦礦薄膜做為元件的主動層,並分析光鈣鈦礦薄膜的表面、結構、光學與激發態特性。本論文採用的太陽能電池架構為:Ag/PCBM/MAxCs1-xPb(IxBr1-x)3/ PEDOT:PSS/ITO/glass。Ag為陰極、ITO(氧化銦錫)為陽極; phenyl-C61-butyric acid methyl ester (PCBM)是電子傳輸層與poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)是電洞傳輸層; MAxCs1-xPb(IxBr1-x)3則是元件的吸光層。
以MA0.8Cs0.2Pb(I0.8Br0.2)3雙鈣鈦礦薄膜做為太陽能電池的吸光層,能獲得最高的功率轉換效率與相對穩定的太陽能電池。透過製程條件的優化,獲得的最高的功率轉換效率(power conversion efficiency,PCE)為9.71%,此元件的短路電流密度(short-circuit current density, JSC)為15.7 mA / cm2、開路電壓(open-circuit voltage, VOC)為1.01 V和填充係數(fill factor, FF)為59.75%。
經過120天的穩定性量測後,MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜太陽能電池的PCE降幅為42.21%;MAPbI3薄膜太陽能電池的PCE降幅為53.91%。代表MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜太陽能電池較為穩定。
摘要(英) The highest power conversion efficiency (PCE) record of CH3NH3PbI3 based thin-film solar cells is up to 24.2%. In order to improve the device stability of the perovskite solar cell , researchers are engaged to modify the light absorbing material (LAM), electron transport layer (ETL) and hole transport layer (HTL). In this research, the double perovskite thin films were applied to the LAM. The structural, surface, optical and excitonic properties of double perovskite thin films were investigated to understand the device physics. The device structure is Ag/PCBM/perovskite/PEDOT:PSS/ITO/glass. Ag and ITO are used as the cathode and anode, respectively. PCBM and PEDOT:PSS are used as the ETL and HTL, respectively. MAxCs1-xPb(IxBr1-x)3 double perovskite thin film is used as the LAM.
When the MA0.8Cs0.2Pb(I0.8Br0.2)3 thin film was used as the LAM, the best PCE of 9.71% can be obtained, which corresponded to the short-circuit current density of 15.7 mA/cm2, the open-circuit voltage of 1.01 V and the fill factor of 59.75%. After 120 days of stability measurement, the PCE of the MA0.8Cs0.2Pb(I0.8Br0.2)3 thin film solar cell decreased by 42.21% ; the PCE of the MAPbI3 thin film solar cell decreased by 53.91% ,so MA0.8Cs0.2Pb(I0.8Br0.2)3 thin film solar cell is relatively stable.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 穩定性
關鍵字(英) ★ perovskite solar cells
★ stability
論文目次 摘要………..…….………..……….………..………………………….. i
圖目錄..……….………..………………………..…………….……...vii
表目錄.……….………..………………………..…………………….. xi
第一章 緒論………..…….………..……….………..……………..1
1.1前言………..…….………..…….……………….………..…….1
1.2太陽能電池發展和分類 ………..……………………………...3
1.2.1矽基晶片型太陽能電池 ………..…….……………..…….5
1.2.2矽薄膜型太陽能電池………..…………….………..…….6
1.2.3有機太陽能電池………..…………..…….………..……...7
1.2.3.1染料敏化太陽能電池………..…….…………..……..7
1.2.3.2小分子有機太陽能電池………..…….………..…….8
1.2.3.3高分子有機太陽能電池………..……..………..……9
1.3研究動機………..……...……..…………..……………..……12
第二章 鈣鈦礦薄膜太陽能電池介紹和文獻回顧….…….14
2.1鈣鈦礦結構起源………..……...………..…….….……..……14
2.2影響鈣鈦礦成膜的因素 ………..……...………..……....…...17
2.3鈣鈦礦薄膜太陽能電池工作原理….………..……….…...…20
2.4能隙調整….………..…………………………………....……23
2.5鈣鈦礦薄膜太陽能電池的可靠性……………….....……......26
第三章 實驗方法……….……..……………..…………..…….30
3.1實驗儀器………..…….………..………….…………...…….30
3.1.1手套箱 ………..………..……………..…………..…….30
3.1.2熱蒸鍍鍍膜系統………..…….………..…..……..…….30
3.2量測儀器………..……………..…….……..…...……..……..31
3.2.1太陽光模擬器………..……………..…..………...…….31
3.2.2光激發螢光光譜儀…………………..…………..……..32
3.2.3寬頻光譜儀………..………...…………………...……..33
3.2.4 X光繞射儀………..……..………..……………..……..34
3.2.5掃描式電子顯微鏡………………..……………..……..35
3.2.6太陽能電池外部量子效率量測系.…….………..…….36
3.2.7水滴接觸角………..………...………..…………..…….37
3.3實驗藥品與溶液配置..……………..……………….....…….38
3.3.1實驗藥品………..…..…..………..…………..………….38
3.3.2溶液配置………..…………..…….……...………..…….39
3.4鈣鈦礦薄膜太陽能電池標準片製程流程……….………..…40
3.4.1 ITO蝕刻玻璃清洗………..….………..…………..…….41
3.4.2 UV-Ozone Cleaner………..……………..……………..41
3.4.3旋塗電洞傳輸層(PEDOT:PSS)及熱退火處理………….42
3.4.4旋塗主動層(鈣鈦礦)及熱退火處理…...…..……..…….43
3.4.5旋塗電子傳輸層(PCBM)及靜置處理………..…...…..….44
3.4.6刮出電極………..……………..……………….…..…….44
3.4.7蒸鍍銀電極………..……………...………..…………….44
第四章 鈣鈦礦薄膜太陽能電池製作和結果分析………..….45
4.1不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)分析…………....….….45
4.1.1不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之模面樣貌...........45
4.1.2不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之薄膜厚度...…....45
4.1.3不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之SEM分析.........46
4.1.4不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之XRD分析.........48
4.1.5不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之光吸收譜分析...52
4.1.6不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之PL分析............55
4.1.7不同x比例(MAxCs(1-x)Pb(IxBr(1-x))3)之J-Vcurve分析..57
4.2 MAPbI3太陽能電池之不同反溶劑(碘苯與甲苯)分析...........60
4.2.1 MAPbI3薄膜之膜面樣貌………...………..…..…...…….60
4.2.2 MAPbI3薄膜之厚度、SEM、水滴接觸角量測分析.......60
4.2.3 MAPbI3薄膜之XRD、吸收光譜、PL量測分析............61
4.2.4 MAPbI3太陽能電池之J-Vcurve…….…………….…….64
4.3 MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜太陽能電池之優化過程……….66
4.3.1 (MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之J-V curve分析……...….66
4.3.2 (MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之膜面樣貌…….………….67
4.3.3 MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之厚度…………...………...68
4.3.4 MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之水接觸角分析...……...….69
4.3.5 MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之SEM分析...………..…....70
4.3.6 MA0.8Cs0.2Pb(I0.8Br0.2)3薄膜之XRD分析...…….……….72
4.3.7 MAPbI3與MA0.8Cs0.2Pb(I0.8Br0.2)3之IPCE分析(甲苯) ..74
4.4元件穩定性量測分析………..…….…………..….…….…….75
4.4.1元件穩定性量測分析(碘苯)………..….………….…….75
4.4.2元件穩定性量測分析(甲苯)……………………....…….78
第五章結論………..…….………..……………..……………..….….81
參考文獻………..…….…….……..……………..……………..…….84
參考文獻 [1] 中國科普博覽,"能源利用的發展史,"http://www.kepu.net.cn/gb/technology/
new_energy/web/a1_n2.html
[2] 台灣因應氣候變化綱要公約資訊網,"能源指標資訊庫,"http://www.tri.
org.tw/unfccc/main06.htm
[3] 太陽能. In: 維基百科. Available: http://zh.wikipedia.org
[4] L. L. Kazmerski, National Renewable Energy Laboratory (NREL), Golden, CO (2015).
[5] 翁敏航(2014),太陽能電池原理、元件、材料、製程與檢測技術,台灣東華書局股份有限公司。
[6] Solar Energy ," 太陽電池材料種類," https://sites.google.com/site/solar energy10399282/10-1
[7] DIGITIMES ," 各類太陽能電池材料發展趨勢與比較,"https://www. digitimes.com.tw/tw/dt/n/shwnws.asp?id=0000397668_78v79qdf5uirem98jk6u7&tid=25&dt=t
[8] 材料世界網," 矽薄膜太陽電池製程技術," https://www.materialsnet.com.tw/
DocView.aspx?id=7016
[9] 科學Online," 有機太陽能電池(Organic Solar Cell)," http://highscope.
ch.ntu.edu.tw/wordpress/?p=8467
[10] EnergyTrend," 染料敏化太陽能電池," https://www.energytrend.com.tw/
knowledge/20140811-9038.html
[11] Merritt, V. Y., and H. J. Hovel. "Organic solar cells of hydroxy squarylium." Applied Physics Letters 29.7 (1976): 414-415.
[12] Tang, Ching W., and Steven A. VanSlyke. "Organic electroluminescent diodes." Applied physics letters 51.12 (1987): 913-915.
[13] Peumans, P., and S. R. Forrest. "Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells." Applied Physics Letters 79.1 (2001): 126-128.
[14] Yakimov, A., and S. R. Forrest. "High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters."Applied Physics Letters 80.9 (2002): 1667-1669.
[15] Sun, Yanming, et al. "Solution-processed small-molecule solar cells with 6.7% efficiency." Nature materials 11.1 (2012): 44
[16] Tsukamoto, Jun, et al. "A Schottky barrier type solar cell using polyacetylene." Japanese Journal of Applied Physics 20.2 (1981): L127.


[17] Yu, G., C. Zhang, and A. J. Heeger. "Dual‐function semiconducting polymer devices: Light‐emitting and photodetecting diodes." Applied physics letters 64.12 (1994): 1540-1542.
[18] Shaheen, Sean E., et al. "2.5% efficient organic plastic solar cells." Applied Physics Letters 78.6 (2001): 841-843.
[19] Dai, Zu Rong, Z. Wei Pan, and Zhong L. Wang. "Novel nanostructures of functional oxides synthesized by thermal evaporation." Advanced Functional Materials 13.1 (2003): 9-24.
[20] Huang, Jinsong, Gang Li, and Yang Yang. "Influence of composition and heat-treatment on the charge transport properties of poly (3-hexylthiophene) and [6, 6]-phenyl C 61-butyric acid methyl ester blends." Applied Physics Letters 87.11 (2005): 112105.
[21] Li, Gang, et al. "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene)." Journal of Applied Physics 98.4 (2005): 043704.
[22] Shrotriya, Vishal, et al. "Absorption spectra modification in poly (3-hexylthiophene): methanofullerene blend thin films." Chemical Physics Letters 411.1-3 (2005): 138-143.
[23] Heo, Jin Hyuck, et al. "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors." Nature photonics 7.6 (2013): 486.
[24] Kojima, Akihiro, et al. "Organometal halide perovskites as visible-light sensitizersfor photovoltaic cells." Journal of the American Chemical Society 131.17 (2009): 6050-6051.
[25] Saliba, Michael, et al. "Cesium-containing triple cation perovskite solar cells:
improved stability, reproducibility and high efficiency." Energy & environmental science 9.6 (2016): 1989-1997
[26] Leijtens, Tomas, et al. "Overcoming ultraviolet light instability of sensitized TiO 2 with meso-superstructured organometal tri-halide perovskite solar cells." Nature communications 4 (2013): 2885.
[27] Choi, Hyosung, et al. "Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells." Nano Energy 7 (2014): 80-85.
[28] McMeekin, David P., et al. "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells." Science 351.6269 (2016): 151-155.
[29] M.I. Saidaminov, J. Almutlaq, S. Sarmah, I. Dursun, A.A. Zhumekenov, R. Begum, J. Pan, N. Cho, O.F. Mohammed, and O.M. Bakr, Pure Cs4PbBr6: Highly Luminescent Zero-Dimensional Perovskite Solids, ACS Energy Lett. 2016, 1, 840−845
[30] Beal, Rachel E., et al. "Cesium lead halide perovskites with improved stability for tandem solar cells." The journal of physical chemistry letters 7.5 (2016): 746-751.
[31] 林建翰. "進化後的敏化染料電池-鈣鈦礦太陽能電池." 光連: 光電產業與技術情報 114 (2014): 11-15.

[32] Liu, Mingzhen, Michael B. Johnston, and Henry J. Snaith. "Efficient planar heterojunction perovskite solar cells by vapour deposition." Nature 501.7467 (2013): 395.
[33] Im, Jeong-Hyeok ,et al. "6.5% efficient perovskite quantum-dot-sensitized solar cell." Nanoscale 3.10 (2011): 4088-4093.
[34] H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, "Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%," Sci Rep, 2 (2012) 7.
[35] Zhou, Huanping, et al. "Interface engineering of highly efficient perovskite solar cells." Science 345.6196 (2014): 542-546.
[36] Im, Jeong-Hyeok, et al. "Growth of CH 3 NH 3 PbI 3 cuboids with controlled size for high-efficiency perovskite solar cells." Nature nanotechnology 9.11 (2014): 927..
[37] Kim, Hui-Seon, Sang Hyuk Im, and Nam-Gyu Park. "Organolead halide perovskite: new horizons in solar cell research." The Journal of Physical Chemistry C 118.11 (2014): 5615-5625.
[38] Jeon, Nam Joong, et al. "Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells." Nature materials 13.9 (2014): 897.
[39] Im, Jeong-Hyeok, et al. "6.5% efficient perovskite quantum-dot-sensitized solar cell." Nanoscale 3.10 (2011): 4088-4093.
[40] Xiao, Manda, et al. "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells." Angewandte Chemie International Edition 53.37 (2014): 9898-9903.
[41] Huang, Fuzhi, et al. "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells." Nano Energy 10 (2014): 10-18
[42] Yin, Wan-Jian, Tingting Shi, and Yanfa Yan. "Unusual defect physics in CH3NH3PbIperovskite solar cell absorber." Applied Physics Letters 104.6 (2014): 063903.
[43] J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, N.G. Park, "Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells." Nature nanotechnology 9.11 (2014): 927.
[44] Huang, Fuzhi, et al. "Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells." Nano Energy 10 (2014): 10-18
[45] Tanaka, Kenichiro, et al. "Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3." Solid state communications 127.9-10 (2003): 619-623.
[46] Brivio, Federico, Alison B. Walker, and Aron Walsh. "Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles." Apl Materials 1.4 (2013): 042111.
[47] Frost, Jarvist M., et al. "Atomistic origins of high-performance in hybrid halide perovskite solar cells." Nano letters 14.5 (2014): 2584-2590.
[48] Mitzi, David B. "Synthesis, structure, and properties of organic‐inorganic perovskites and related materials." Progress in inorganic chemistry (1999): 1-121.
[49] Kieslich, Gregor, Shijing Sun, and Anthony K. Cheetham. "An extended tolerance factor approach for organic–inorganic perovskites." Chemical science 6.6 (2015): 3430-3433.
[50] Anaya, Miguel, et al. "ABX3 perovskites for tandem solar cells." Joule 1.4 (2017): 769-793.
[51] Lee, Michael M., et al. "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites." Science 338.6107 (2012): 643-647.
[52] Kojima, Akihiro, et al. "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells." Journal of the American Chemical Society 131.17 (2009): 6050-6051.
[53] Eperon, Giles E., et al. "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells." Energy & Environmental Science 7.3 (2014): 982-988.
[54] Noh, Jun Hong, et al. "Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells." Nano letters 13.4 (2013): 1764-1769.
[55] 材料世界網," 鈣鈦礦太陽電池於堆疊型太陽電池之應用," https://www.
materialsnet.com.tw/DocDnld.aspx?id=35387
[56] Snaith, Henry J. "Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells." The journal of physical chemistry letters 4.21 (2013): 3623-3630.
[57] Hoke, Eric T., et al. "Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics." Chemical Science 6.1 (2015): 613-617.
[58] McMeekin, David P., et al. "A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells." Science 351.6269 (2016): 151-155

[59] Barker, Alex J., et al. "Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films." ACS Energy Letters 2.6 (2017): 1416-1424.
[60] Hao, Feng, et al. "Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%." Journal of the American Chemical Society 136.46 (2014): 16411-16419.
[61] Eperon, Giles E., et al. "Perovskite-perovskite tandem photovoltaics with optimized band gaps." Science 354.6314 (2016): 861-865.
[62] Kim, Hui-Seon, et al. "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%." Scientific reports 2 (2012): 591.
[63] Burschka, Julian, et al. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature 499.7458 (2013): 316.
[64] Ono, Luis K., Yabing Qi, and Shengzhong Frank Liu. "Progress toward stable lead halide perovskite solar cells." Joule (2018).
[65] Wang, Qiong, et al. "Enhancement in lifespan of halide perovskite solar cells." Energy & Environmental Science 12.3 (2019): 865-886.
[66] Luo, Paifeng, et al. "Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells." The journal of physical chemistry letters 7.18 (2016): 3603-3608.
[67] 工業材料86期 ," X光繞射原理及其應用," https://www.materialsnet
.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/XR/TF-XRD/TF-XRD001.pdf
[68] Johnson Jr, Rulon E., and Robert H. Dettre. "Contact angle hysteresis. III. Study of an idealized heterogeneous surface." The journal of physical chemistry 68.7 (1964): 1744-1750.
[69] Lin, Kuen-Feng, et al. "Unraveling the high performance of tri-iodide perovskite absorber based photovoltaics with a non-polar solvent washing treatment." Solar Energy Materials and Solar Cells 141 (2015): 309-314.
[70] A. Ates, M.A. Yildirim, M. Kundakci, M. Yildirim, "Investigation of optical and structural properties of CdS thin films," Chin. J. Phys., 45 (2007) 135-141.
指導教授 陳昇暉 張勝雄(?????­-??? ???? ?????-?????? ?????) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明