博碩士論文 106226046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.218.94.236
姓名 尤鈺臻(Yu-Jhen You)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 類神經網路於光柵設計之應用
(Grating Profile Generation using Artificial Neural Networks)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 類神經網路近年來在醫學、工程及金融方面都被廣泛地應用,此方法可經由給予適當的訓練資料及神經網路架構的設計,使類神經網路執行單一特定任務。本研究使用類神經網路進行光柵設計,以目標的繞射效率為輸入,相對應的光柵結構為輸出,進行類神經網路訓練。使用類神經網路方法除了可以避免一般在光柵設計中需解決馬克斯威爾方程式的反向問題,更可以達到即時的光柵設計,光柵計算時間大約0.2秒,可應用於快速光柵設計。研究中使用最簡單的類神經網路架構,即可達到光柵設計的功能,其繞射效率和理論值相近,更可以驗證類神經網路應用於光柵設計的可行性。研究中亦嘗試使用類神經網路進行超穎介面全像片之設計,使用三道不同方向之光切換重建出三種不同圖案,期望可以降低在設計時所需的計算量。
摘要(英) Neural networks have been successfully applied in many applications. With appropriate training data and fine design of the artificial neural networks structure, the neural networks can be trained to carry out specific tasks. In literature, to design the grating profile for specific diffraction efficiencies requires to solve the inverse Maxwell’s equation with the optimization methods such as the genetic algorithm. The optimization process is time-consuming. By using the neural networks method to perform the learning and testing processes, we could obtain the desired grating profile with a very short time around 0.2 second. In this study, we use the Rigorous Coupled-Wave Analysis method to obtain the diffraction efficiencies of the gratings with specific dimensions. The diffraction efficiencies and the grating profiles serve as the input and the target output respectively to train the neural networks. The grating profiles of the specific diffraction efficiencies can be generated within one second and can be applied for fast grating profile generation. In order to reduce the computation time when encoding the hologram on the metasurface, we also try to use the neural networks to design the metasurface hologram. In our work, we used three light beams from different directions to switch different diffraction patterns on the hologram.
關鍵字(中) ★ 光柵設計
★ 類神經網路
★ 繞射效率
關鍵字(英) ★ grating design
★ neural networks
★ diffraction efficiency
論文目次 摘要 II
Abstract VI
誌謝 VII
目錄 VII
圖目錄 X
表目錄 XII
第一章、 緒論 1
1.1 研究動機 1
1.2 人工智慧於光學結構設計之應用 2
1.3 研究方法 3
1.4 結論 5
第二章、 類神經網路(Artificial Neural Networks) 6
2.1 人工類神經網路介紹及發展歷史 6
2.2 類神經網路基本單元及架構 9
2.3 類神經網路學習方法 13
2.4 結論 15
第三章、 嚴格耦合波分析(Rigorous coupled-wave analysis) 16
3.1 理論介紹 16
3.2 結論 20
第四章、 類神經網路應用於光柵設計 22
4.1 實驗流程 22
4.2 訓練資料產生 22
4.3 類神經網路訓練 28
4.4 類神經網路測試 35
4.5 結論 39
第五章、 類神經網路應用於超穎介面全像片設計 40
5.1 超穎介面(Metasurface)原理簡介 40
5.2 計算流程 43
5.3 結論 50
第六章、 結論與未來展望 51
6.1 總結 51
6.2 未來展望 51
參考文獻 52
參考文獻 [1] Y.-T. Zhou and R. Chellappa, Artificial neural networks for computer vision (Springer Science & Business Media, 2012), Vol. 5.
[2] R. J. Mammone, Artificial neural networks for speech and vision (Chapman & Hall, 1994), Vol. 4.
[3] S. Chopra, D. Yadav, and A. Chopra, "Artificial Neural Networks Based Indian Stock Market Price Prediction: Before and After Demonetization," J Swarm Intel Evol Comput 8, 2 (2019).
[4] P. Covington, J. Adams, and E. Sargin, "Deep Neural Networks for YouTube Recommendations," in Proceedings of the 10th ACM Conference on Recommender Systems, (ACM, Boston, Massachusetts, USA, 2016), pp. 191-198.
[5] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and H. Larochelle, "Brain tumor segmentation with Deep Neural Networks," Medical Image Analysis 35, 18-31 (2017).
[6] D. C. Kim, A. Hermerschmidt, P. Dyachenko, and T. Scharf, Design and analysis of binary fan-out gratings based on step-transition perturbation approach, SPIE LASE (SPIE, 2019), Vol. 10904.
[7] A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, "Inverse design and implementation of a wavelength demultiplexing grating coupler," Scientific Reports 4, 7210 (2014).
[8] G. Bao, D. C. Dobson, and J. A. Cox, "Mathematical studies in rigorous grating theory," JOSA A 12, 1029-1042 (1995).
[9] D. C. Dobson, "Optimal shape design of blazed diffraction gratings," Applied Mathematics and Optimization 40, 61-78 (1999).
[10] L. D. Khalaf and A. F. Peterson, "Performance of the simulated annealing and genetic algorithms for the design of periodic devices," International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 7, 108-116 (1997).
[11] K. Yao, R. Unni, and Y. Zheng, "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale," Nanophotonics 8, 339-366 (2019).
[12] J. Jiang, J. Cai, G. P. Nordin, and L. Li, "Parallel microgenetic algorithm design for photonic crystal and waveguide structures," Opt. Lett. 28, 2381-2383 (2003).
[13] L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Applied Physics Letters 84, 4460-4462 (2004).
[14] J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE transactions on antennas and propagation 52, 397-407 (2004).
[15] J. S. Jensen and O. Sigmund, "Topology optimization for nano‐photonics," Laser & Photonics Reviews 5, 308-321 (2011).
[16] D. Bertsimas and O. Nohadani, "Robust optimization with simulated annealing," Journal of Global Optimization 48, 323-334 (2010).
[17] W. Ma, F. Cheng, and Y. Liu, "Deep-learning-enabled on-demand design of chiral metamaterials," ACS nano 12, 6326-6334 (2018).
[18] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, "Plasmonic nanostructure design and characterization via Deep Learning," Light: Science & Applications 7, 60 (2018).
[19] D. Liu, Y. Tan, E. Khoram, and Z. Yu, "Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures," ACS Photonics 5, 1365-1369 (2018).
[20] J. M. Zurada, Introduction to artificial neural systems (West publishing company St. Paul, 1992), Vol. 8.
[21] I. A. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals, computing, design, and application," Journal of Microbiological Methods 43, 3-31 (2000).
[22] J. W. Kalat, Biological psychology (2016).
[23] S. S. Haykin, Neural networks and learning machines (Pearson education Upper Saddle River, 2009).
[24] Wikipedia contributors, "All-or-none law" (Wikipedia, The Free Encyclopedia, 15 June 2019 08:19 UTC), retrieved 19 July 2019 19:09 UTC,https://en.wikipedia.org/w/index.php?title=All-or-none_law&oldid=901929586.
[25] D. O. Hebb, The organization of behavior: a neuropsychological theory (Science Editions, 1962).
[26] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psychological review 65, 386 (1958).
[27] M. Minsky, S. A. Papert, and L. Bottou, Perceptrons: An Introduction to Computational Geometry (MIT Press, 2017).
[28] G. E. Hinton, "Learning distributed representations of concepts," in Proceedings of the eighth annual conference of the cognitive science society, (Amherst, MA, 1986), 12.
[29] 李開復 and 王詠剛, 人工智慧來了 (天下文化, 台灣, 2017).
[30] M. Paluszek and S. Thomas, MATLAB machine learning (Apress, 2016).
[31] 斎藤康毅, Deep Learning:用Python進行深度學習的基礎理論實作 (歐萊禮 台灣, 2017).
[32] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE transactions on Neural Networks 5, 989-993 (1994).
[33] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural network design (Martin Hagan, 2014).
[34] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data (AMLBook New York, NY, USA:, 2012), Vol. 4.
[35] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
[36] M. Moharam and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA 71, 811-818 (1981).
[37] M. H. Beale, M. T. Hagan, and H. B. Demuth, Neural network toolbox user’s guide, The MathWorks Inc (2017).
[38] J. Park and I. W. Sandberg, "Universal approximation using radial-basis-function networks," Neural computation 3, 246-257 (1991).
[39] H.-T. Chen, A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Reports on progress in physics 79, 076401 (2016).
[40] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nature Communications 8, 187 (2017).
[41] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
[42] G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, "Large‐area metasurface perfect absorbers from visible to near‐infrared," Advanced Materials 27, 8028-8034 (2015).
[43] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science 349, 1310-1314 (2015).
[44] L. Huang, S. Zhang, and T. Zentgraf, "Metasurface holography: from fundamentals to applications," Nanophotonics 7, 1169-1190 (2018).
[45] M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, "Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices," Advanced Materials 28, 2533-2539 (2016).
[46] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless Phase Discontinuities for Controlling Light Propagation," Nano Letters 12, 5750-5755 (2012).
[47] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nature Nanotechnology 10, 937 (2015).
[48] N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139 (2014).
[49] Z. e. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings," Opt. Lett. 27, 1141-1143 (2002).
[50] X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, "Ultrathin Pancharatnam–Berry metasurface with maximal cross‐polarization efficiency," Advanced Materials 27, 1195-1200 (2015).
[51] G. T. Nemetallah, R. Aylo, and L. A. Williams, Analog and digital holography with MATLAB (SPIE press, 2015).
[52] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005).
[53] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media," IEEE Transactions on antennas and propagation 14, 302-307 (1966).
[54] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, "Generative Model for the Inverse Design of Metasurfaces," Nano Letters 18, 6570-6576 (2018).
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明