博碩士論文 106232013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:18.191.87.157
姓名 林聖寰(Shang-Hwan Lin)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 磷光材料應用於電激發有機偏極子元件之研究
(Application of phosphorescence materials in electrically pumped organic polariton device)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 有機薄膜材料電致發光及光子晶體共振腔研究
★ 微米光柵壓印有機太陽能電池主動層之研究★ 有機波導結構的ASE現象研究以及共振腔結構的模擬
★ 利用金屬微共振腔研究光與有機激發態強耦合現象★ 多層式雙極有機場效電晶體之研究
★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究
★ 有機染料分子薄膜之光電特性研究★ 多層結構有機電晶體之研究
★ 分離式二氧化鈦奈米管在染料敏化太陽能電池之運用★ 有機平板波導元件電激發光特性之研究
★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象★ 有機強耦合共振腔元件設計與發光量測系統架設之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-14以後開放)
摘要(中) 本論文主旨為研究在intra-cavity pumping架構下以紅色磷光有機發光二極體(OLED)光子源的電激發有機偏極子元件並透過該元件設計與實驗探討在不同共振角度及能態參數下其發光效率及機制。Intra-cavity pumping為直接激發偏極子能態發光,與non-resonant這種元件比較起來,更能降低偏極子散射時的損耗,並提高偏極子元件的的發光效率。Intra-cavity pumping的主要架構為在共振腔中置入高吸收層的有機材料作為激子庫,以及適合的寬頻光源的OLED作為激發光子源,並根據模層模擬使上述兩層中之電場最大化,因此針對這些進行模層結構高吸收層及光子源的優化。

實驗中使用紅色磷光發光二極體作為光子源,並根據實驗結果證明光子源的表現對於元件發光效率有很大的影響,實驗研究發現在室溫下intra-cavity pumping架構的電激發偏極子元件可以達到一定的發光效率約4%的EQE、6.8mW/cm2的光強與170meV的拉比分裂。此一結果,可進一步提供未來電激發偏極子雷射發展之基礎與重要參考。
摘要(英) In this thesis, an electrically pumped organic polariton device embedded with a red phosphorescent organic light-emitting diode (OLED) as light source based on intra-cavity pumping structure is developed and its external quantum efficiency studied.

Intra-cavity pumping is a kind of resonant pumping mechanism in a micro-cavity through an external voltage applied to excite the energy state of the polariton. Comparing with non-resonant pumping, the structure of the intra-cavity pumping performs better in reducing the energy loss in the process of polariton scattering and improve the luminous efficiency of polariton devices. The key feature of the intra-cavity pumping is to add a high absorption organic layer in the resonant cavity to trap polariton, and a suitable broadband light source layer, e.g. OLED, to generate photons as excitation light source. How to optimize the luminous efficiency in this composition of the polariton layer and organic photon source structure through various design parameters of this type of devices still remains a challenge

In the thesis, we use red phosphorescent OLED as the photon source coupled with DEDOC as high absorption polariton source. From our experimental results, it is found that the performance of the photon source has impact on luminous efficiency on the device. The study shows that this kind of strong coupling device can achieve external quantum efficiency (EQE) about 4%, light intensity 6.8mW / cm^2 and rabi-splitting of 170 meV. The result can provide a foundation for future reference of improvement.
關鍵字(中) ★ 偏極子
★ 微共振腔
★ 有機強耦合
★ 有機發光二極體
★ 電致激發
關鍵字(英) ★ strong coupling
★ Intra-cavity
★ OLED
★ electrically pumping
★ polariton
論文目次 目錄

頁碼
摘要 IV
ABSTRACT V
致謝 VI
目錄 VII
圖目錄 X
第一章 緒論 1
1-1 名詞解釋 1
1-2 有機偏極子雷射發物理機制 2
1-3 研究目的與動機 8
第二章 基礎理論 10
2-1 有機發光二極體基本理論 10
2-1-1 有機發光二極體基本結構 10
2-1-2 載子注入與傳輸機制 12
2-1-3主體(Host)與客體(Guest)間能量轉移機制 15
2-1-4量子效率(Quantum Efficiency) 17
2-2 模矩陣 18
2-2-1 正向入射 18
2-2-2 斜向入射 20
2-2-3 非相干性之反射與透射 21
2-3 電場分布 22
2-3-1 導納軌跡 22
2-3-2 電場分布 24
2-4 克拉莫-克若尼關係式(KRAMERS–KRONIG RELATIONS) 25
2-5 微共振腔中光子模態與強耦合關係 26
2-5-1 強耦合與哈密頓量(Hamiltonian) 27
2-5-2 哈密頓(Hamiltonian)矩陣 30
第三章 實驗方法與架構 34
3-1-1手套箱 (Glove Box) 35
3-1-2雙電子槍蒸鍍系統 36
3-1-3熱蒸鍍機 (Thermal Evaporation Coater) 36
3-1-4浸沾式塗佈(Dip)與旋轉塗佈(Spin)製程 38
3-1-5半導體參數分析儀(Semiconductor Parameter Analyzer, SPA) 39
3-1-6 即時性多角度光譜量測系統 41
3-1-7攜帶式光譜儀 41
3-1-8紫外光/可見光光譜儀(Ultraviolet-Visible Spectroscopy) 42
3-1-9積分球光學檢測儀 43
3-2強耦合元件實驗方法及製備 44
第四章 實驗結果與討論 47
4-1高吸收強耦合材料 47
4-2 MACLEOD 光學膜層設計與磷光光子源OLED 50
4-2-1光學膜層設計 50
4-2-2磷光有機發光二極體 54
4-3共振腔元件量測結果與討論 61
4-3-1 紅光強耦合元件 61
第五章 結論與未來展望 64
參考文獻 66
參考文獻 1. A. I. Tartakovskii, M. E.-I., D. G. Lidzey, M. S. Skolnick, D. D. C. Bradley, S. Walker, and V. M. Agranovich. ”Raman scattering in strongly coupled organic semiconductor microcavities.” Phys. Rev. B 63(12), 2001.
2. Armando Genco, A. R., Salvatore Savasta, Salvatore Patanè, Giuseppe Gigli, Marco Mazzeo. ”Bright Polariton Coumarin‐Based OLEDs Operating in the Ultrastrong Coupling Regime.” ADVANCED OPTIC MATERIALS 6(17), 2018.
3. C. Weisbuch, M. N., A. Ishikawa, and Y. Arakawa. ”Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity.” Phys. Rev. Lett. 69, 3314, 1992.
4. Christian Schneider, A. R.-I., Na Young Kim, Julian Fischer, Ivan G. Savenko, Matthias Amthor, Matthias Lermer, Adriana Wolf, Lukas Worschech, Vladimir D. Kulakovskii, Ivan A. Shelykh, Martin Kamp, Stephan Reitzenstein, Alfred Forchel, Yoshihis Yamamoto & Sven Höfling. ”An electrically pumped polariton laser.” Nature 497: 348–352, 2013.
5. Coles DM, S. N., Michetti P, Clark C, Lagoudakis PG, Savvidis PG, Lidzey DG. ”Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity.” Nat Mater 13(7):712-9, 2014.
6. D. G. Lidzey, A. M. F., M. D. Rahn, M. S. Skolnick, V. M. Agranovich, and S. Walker. ”Experimental study of light emission from strongly coupled organic semiconductor microcavities following nonresonant laser excitation.” Phys. Rev. B 65, 2002.
7. David M. Coles, P. M., Caspar Clark, Ali M. Adawi, and David G. Lidzey. ”Temperature dependence of the upper-branch polariton population in an organic semiconductor microcavity.” Phys. Rev. B 84, 2011.
8. David M. Coles, P. M., Caspar Clark, Wing Chung Tsoi, Ali M. Adawi, Ji‐Seon Kim David G. Lidzey. ”Vibrationally Assisted Polariton-Relaxation Processes in Strongly Coupled Organic-Semiconductor Microcavities.” Adv. Funct. Mater. 21(19): 3691-3696, 2011.
9. David M. Coles, R. T. G., David G. Lidzey, Caspar Clark, and Pavlos G. Lagoudakis. ”Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities.” Phys. Rev. B 88(12), 2013.
10. Forrest, S. K.-C. S. R. ”Room-temperature polariton lasing in an organic single-crystal microcavity.” Nature Photonics 4, pages371–375, 2010.
11. Fukui, K. Y., Teijiro; Shingu, Haruo. ”A Molecular Orbital Theory of Reactivity in Aromatic Hydrocarbons.” The Journal of Chemical Physics 20(4): p.722-725, 1952.
12. G. M. Akselrod, E. R. Y., K. W. Stone, A. Palatnik, V. Bulovic, and Y. R. Tischler. ”Reduced lasing threshold from organic dye microcavities.” Phys. Rev. B 90(3), 2014.
13. Gleb M. Akselrod, E. R. Y., M. Scott Bradley, and Vladimir Bulović. ”Lasing through a strongly-coupled mode by intra-cavity pumping.” OPTICS EXPRESS 21(10): 12122-12128, 2013.
14. Hui Deng, H. H., and Yoshihisa Yamamoto. ”Exciton-polariton Bose-Einstein condensation.” Rev. Mod. Phys. 82, 1489, 2010.
15. J. Chovan, I. E. P., S. Ceccarelli, and D. G. Lidzey. ”Controlling the interactions between polaritons and molecular vibrations in strongly coupled organic semiconductor microcavities.” Phys. Rev. B 78(4), 2008.
16. John E. Bertie and , S. L. Z. ”INFRARED INTENSITIES OF LIQUIDS .9. THE KRAMERS-KRONIG TRANSFORM, AND ITS APPROXIMATION BY THE FINITE HILBERT TRANSFORM VIA FAST FOURIER-TRANSFORMS.” Canadian Journal of Chemistry 70(2), 1992.
17. Jung-Hoon Song, Y. H., A. V. Nurmikko, J. Tischler, and V. Bulovic. ”Exciton-polariton dynamics in a transparent organic semiconductor microcavity.” Phys. Rev. B 69(23), 2004.
18. L. G. Connolly, D. G. L., R. Butté, A. M. Adawi, D. M. Whittaker, and M. S. Skolnick. ”Strong coupling in high-finesse organic semiconductor microcavities.” Appl. Phys. Lett. 83(26): 5377-5379, 2003.
19. Mahrt, T. S. J. D. P. L. M. U. S. R. F. ”Exciton-polariton Bose-Einstein condensation with a polymer at room temperature.” SPIE 9370(93702T-3).
20. Michael Slootsky, Y. Z., and Stephen R. Forrest (2012). ”Temperature dependence of polariton lasing in a crystalline anthracene microcavity.” Phys. Rev. B 86(4), 2015.
21. Murray A.Lampert, R. B. S. ”Current Injection in Solids.” Semiconductors and Semimetals 6, 1970.
22. Nikolaos Christogiannis, N. S., Paolo Michetti, David M. Coles, Pavlos G. Savvidis. Pavlos G. Lagoudakis, David G. Lidzey. ”Characterizing the Electroluminescence Emission from a Strongly Coupled Organic Semiconductor Microcavity LED.” ADVANCED OPTIC MATERIALS, 2013.
23. Robert Nitsche, Torsten Fritz. ”Determination of model-free Kramers-Kronig consistent optical constants of thin absorbing films from just one spectral measurement: Application to organic semiconductors.” Phys. Rev. B 70(19), 2004.
24. Nordheim, R. H. F. a. L. ”Electron emission in intense electric fields.” Royal Society A 119(781), 1928.
25. P. A. Hobson, W. L. B., D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, S. Walker. ”Strong exciton-photon coupling in a low-Q all-metal mirror microcavity.” Appl. Phys. Lett. 81, 2002.
26. P. Michetti, G. C. L. R. ”Exciton-phonon scattering and photoexcitation dynamics in J-aggregate microcavities.” Phys. Rev. B 79(3), 2009.
27. Paolo Michetti, G. C. L. R. ”Polariton-polariton scattering in organic microcavities at high excitation densities.” Phys. Rev. B 82, 2010.
28. Paolo Vacca, M. P., Alfredo Guerra, Rosa Chierchia, Carla Minarini, Dario Della Sala, Alfredo Rubino. ”The Relation between the Electrical, Chemical, and Morphological Properties of Indium−Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance.” Phys. Chem. C, 2007.
29. R.J.Holmes, S. R. F. ”Strong exciton-photon coupling in organic materials.” Organic Electronics 8(2-3): 77-93, 2007.
30. Rocca, P. M. a. G. C. L. ”Polariton states in disordered organic microcavities.” Phys. Rev. B 71, 2005.
31. Rocca, P. M. a. G. C. L. ”Simulation of J-aggregate microcavity photoluminescence.” Phys. Rev. B 77, 2008.
32. Samira Ceccarelli. Jakub Wenus, M. S. S., David G.LidzFKkey. ”Temperature dependent polariton emission from strongly coupled organic semiconductor microcavities.” Superlattices and Microstructures 41(5-6): 289-292, 2007.
33. Simmons, J. G. ”Richardson-Schottky Effect in Solids.” Physical Review Letters, 1965.
34. Tischler JR, B. M., Bulović V, Song JH, Nurmikko A. ”Strong coupling in a microcavity LED.” Phys Rev Lett. 95(3), 2005.
35. V. M. Agranovich, M. L., and D. G. Lidzey. ”Cavity polaritons in microcavities containing disordered organic semiconductors.” Phys. Rev. B 67(8), 2003.
36. D. S. Dovzhenko, S.V.R., Yu. P. Rakovich and I. R. Nabiev, Light–matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale, 10(8): p. 3589-3605, 2018.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明