博碩士論文 106322019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.15.133.37
姓名 劉家豪(Chia-Hao Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橫向等向性合成岩體之力學行為及其變異性
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以PFC3D(Particle Flow Code3D)結合FracMan模擬不同裂隙傾角之橫向等向性合成岩體,在單軸或三軸壓縮試驗下之破壞模態(failure modes)、單壓強度(UCS)、楊氏模數(E50)與變異性(CV),並與過往理論進行驗證。同時探討裂隙直徑(D)、費雪常數(κ)、裂隙程度(P32)等裂隙參數以及取樣體積變化對裂隙岩體力學行為及其變異性的影響,且整合一異向性指標,可用來表示為橫向等向性岩體之異向性程度。
本文研究結果顯示為:(1)橫向等向性岩體之力學性質與傾角呈U型關係;然而,力學性質之變異係數與傾角呈一倒U型關係。(2)此外,裂縫發展受裂隙傾角之影響,在單壓試驗下之破壞模態共可歸納為四類,分別為穿層破壞模態(Sliding or split across inherent fracture mode)、滑動破壞模態(Sliding along inherent fracture mode)、劈裂破壞模態(Split along inherent fracture mode)、混合模態(Mixed mode)。(3)橫向等向性岩體之單壓強度及楊氏模數之變異係數與取樣體積開根號成反比,符合統計學中央極限定理(central limit theorem)。與等向性結果相同(田永銘等,2017)。(4)三軸試驗中當圍壓越大,其力學性質與變異性之異向性皆越低,呈負相關。並與Tien and Kuo ( 2001 )的破壞準則進行比較,其結果高度吻合。(5)D、κ、P32等裂隙參數,對力學行為及其變異性影響甚鉅,隨著D、κ、P32提升,其力學性質與變異性的異向性越顯著,呈正相關。同時本文提出一量化之異向性指標「異向性比,AR(anisotropic ratio)」,並建立AR與D、κ、P32之關係。
摘要(英) This paper employs 3-D Particle Flow Code and FracMan to simulate synthetic transversely isotropic rocks masses with different dip angles (β) and focuses on the uniaxial compressive strength (UCS), Young’s modulus (E50), failure modes, and coefficient of variance (CV) under unconfined compression test and triaxial test. And we verify our simulation results to criterion. This paper also presents the effect of sampling volume and fracture parameters such as fracture intensity (P32), fracture diameter (D), and Fisher constant (κ) on the mechanical behavior and variation of fractured rock. Furthermore, a new anisotropic index for the anisotropic degree of transversely isotropic rocks has been developed and presented.
Based on the numerical simulation results:(1) The relationship between the mechanical properties of transversely isotropic rocks and β presents the U-typed relation. However, the relationship between CVs of the mechanical properties and β presents the inverted U-typed relation. (2) In addition, the crack development is affected by dip angle of fracture, and we generalize four failure modes under unconfined compression test. The failure modes are sliding or split across inherent fracture mode, sliding along inherent fracture mode, split along inherent fracture mode, and mixed mode, respectively. (3) The coefficient of variations (CV) of uniaxial compressive strength and Young’s modulus are inversely proportional to the squared root of sampling volume, which conforms the central limit theorem. The result is the same as isotropic. (Tien et al., 2017) (4) The anisotropic of mechanical properties and variations decrease with increase of confining pressures under triaxial test, which shows the negeative relation. The simulation results almost agree with results of Tien and Kuo Criterion (2001). (5) The fracture diameter (D), fracture intensity (P32), and the Fisher constant (κ) all have significant effects on the mechanical behavior and variation. The anisotropic of mechanical properties and variations increase with the increase of D, κ, and P32, which shows the positive relation. This paper also proposed a anisotropic ratio (AR) and established the relationship among AR, D, κ, and P32 of transversely isotropic rocks.
關鍵字(中) ★ 橫向等向性
★ 裂隙岩體
★ 合成岩體
★ 破壞模態
★ 變異性
★ PFC3D
關鍵字(英) ★ transversely isotropic
★ fractured rock
★ synthetic rock mass
★ failure mode
★ variation
★ PFC3D
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XVIII
1 第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與方式 2
1.3 論文內容及架構 3
2 第二章 文獻回顧 4
2.1 合成岩體 4
2.1.1 離散裂隙網路(DFN) 5
2.1.2 鍵結顆粒模型(BPM) 5
2.1.3 平滑節理模型(SJM) 7
2.2 裂隙含量量測及定義 9
2.3 橫向等向性岩石之定義及材料組成律 12
2.4 橫向等向性岩石之彈性常數求取方法 14
2.5 Jaeger(1960)破壞準則 17
2.6 Tien and Kuo(2001)破壞準則 21
3 第三章、研究方法 27
3.1 研究流程 27
3.2 建模步驟 28
3.2.1 離散裂隙網路模型建立 28
3.2.2 合成岩體模型建立 29
3.3 完整岩體模型 33
4 第四章、橫向等向性岩體力學行為及其變異性 36
4.1 單軸壓縮試驗下力學性質及其變異性 36
4.2 單軸壓縮試驗下之破壞模態 39
4.3 橫向等向性彈性常數之求取 45
4.4 取樣體積之影響 47
4.5 三軸壓縮試驗下力學性質及其變異性 52
5 第五章、裂隙參數對力學行為及其變異性影響之探討 59
5.1 裂隙直徑之影響 59
5.1.1 裂隙直徑與破壞模態之關係 60
5.1.2 裂隙直徑與力學性質之關係 73
5.1.3 裂隙直徑與變異性之關係 79
5.2 費雪常數之影響 83
5.2.1 費雪常數與破壞模態之關係 84
5.2.2 費雪常數與力學性質之關係 96
5.2.3 費雪常數與變異性之關係 102
5.3 裂隙程度之影響 106
5.3.1 裂隙程度與破壞模態之關係 107
5.3.2 裂隙程度與力學性質之關係 119
5.3.3 裂隙程度與變異性之關係 125
5.4 異向性程度與裂隙參數關係之整合探討 129
6 第六章、結論與建議 141
6.1 結論 141
6.2 建議 145
參考文獻 146
參考文獻 1. 田永銘、盧育辰、許哲睿、鄭華恩、法麗佳,「裂隙岩體幾何與力學表徵單元體積及其力學性質」,科技部專題研究計畫期末報告,MOST 105-2221-E-008-026(2017)。
2. 田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體模式決定表徵單元體尺寸(Ⅱ、Ⅲ)」,科技部專題研究計畫期中報告,MOST 107-2221-E-008-020-MY2 (2019)。
3. 法麗佳,「針對裂隙岩體裂隙程度(P32)與水利傳導係數之表徵單元體積(REV)進行探討」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
4. 許哲睿,「岩體裂隙程度與力學性質之不確定性」,碩士論文,國立中央大學土木工程學系,中壢(2017)。
5. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程學系,中壢(2005)。
6. 曾禹昕,「裂隙岩體水力傳導隙數之不確定性」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
7. 劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
8. 鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
9. 鄭華恩、田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體探討裂隙岩體的力學行為」,第十四屆岩盤工程研討會,國立成功大學,台南(2018)。
10. Amadei, B., “Important of anisotropy when estimating and measuring in situ stress in rock,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 33, pp. 293-325 (1996).
11. Amadei, B., Influence of Rock Anisotropy on Stress Measurements by Overcoring Techniques, Rock Anisotropy and the Theory of Stress Measurements, Springer, Berlin, Heidelberg, pp. 189-241(1983).
12. Bieniawski, Z.T., “Mechanism of brittle fracture of rock: Part II—experimental studies,” Int J Rock Mech Min Sci, Vol. 4, pp. 407-423 (1967).
13. Bieniawski, Z.T., Rock mechanics design in mining and tunneling. A.A., Balkema, Rotterdam (1984).
14. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
15. Deere, D.U. and Miller, R.P., “ Engineering classification and index properties of intact rock, ”Air Force Laboratory Technical Report No.AFNL-TR-65-116, Albuquerque, NM. (1966).
16. Dershowitz, W.S.“Rock joint system”Ph.D. Dissertation, MIT, Cambridge, Mass (1985).
17. Dershowitz, W.S., and Einstein, H.H.,“Characterizing rock joint geometry with joint system models,”Journal of Rock Mechanics and Rock Engineering, Vol. 21, pp. 21-51 (1988).
18. Dershowitz, W.S., and Herda, H.H.,“Interpretation of Fracture Spacing and Intensity,”The 33th U.S. Symposium on Rock Mechanics, Santa Fe, New Mexico (1992).
19. Duan, K., and Kwok, C.Y., “Discrete element modeling of anisotropic rock under Brazilian test conditions,” Int J Rock Mech Min Sci, Vol. 78, pp. 45-56 (2015).
20. Elmo, D., Rogers, S., Stead, D., and Eberhardt, E., “Discrete Fracture Network approach to characterise rock mass fragmentation and implications for geomechanical upscaling,” Mining Technology, Vol.123(3), pp. 149-161 (2014).
21. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
22. Farichah, Himatul, Hsu, C.J., and Tien, Y.M., “A novel equation to determine geometrical representative elementary volume of fractured rock mass,” The 51st U.S. Rock Mechanics Symposium, San Francisco, USA (2017).
23. H"U" ̈rlimann, W., Splitting risk and premium calculation, Bulletin of the Swiss Association of Actuaries, pp. 229-249 (1994).
24. Hoek, E., and Brown, E.T., “The Hoek–Brown failure criterion—a 1988 update,” In: Curran J (ed) Proceedings of the 15th Canadian Rock Mechanics Symposium, University of Toronto, pp 31-38 (1988).
25. Hoek, E., and Brown, E.T., Underground Excavations in Rock, Taylor & Francis Group, United States of America (1980).
26. Itasca Consulting Group Inc. PFC3D(particle flow code in 3 dimensions), Version 5.0, MN 55401 (2013).
27. Ivars, D.M., Pierce, M.E., Darcel, C., “Anisotropy and scale dependency in jointed rock mass strength – A Synthetic Rock Mass Study,” In Proceedings of the 1st International FLAC/DEM Symposium on Numerical Modeling, pp. 231-239 (2008).
28. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48, pp. 219-244 (2011).
29. Jaeger, J.C., “Shear failure of anistropic rocks,” Geol Mag, Vol. 97(1) pp. 65-72 (1960).
30. Liu, W.C., Tien, Y.M., Juang, C.H., and Lin, J. S., “Numerical investigation of crack propagation and failure mechanism of layered rocks,” 47th U.S. Rock Mechanics / Geomechanics Symposium, San Francisco, USA, 23–26 June 2013 .Paper No. 13-673 (2013).
31. Lu, Y.C., “Uncertainties of geometrical and mechanical properties of heterogeneous media and discontinuous rock masses,” Ph.D. Dissertation, Dept. of Civil Engineering, National Central University, Taoyuan, Taiwan (2018).
32. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
33. Pierce, M., Mas Ivars, D., Cundall, P.A. and Potyondy, D.O., “A Synthetic Rock Mass Model for Jointed Rock,” Rock Mechanics: Meeting Society′s Challenges and Demands (1st Canada-U.S. Rock Mechanics Symposium, Vancouver, Canada, pp. 341-349 (2007).
34. Potyondy, D.O., “Simulating spalling, phase II: feasibility assessment,” Itasca Consulting Group Report to Svensk Karnbranslehantering AB (SKB), Stock- holm, Sweden, ICG09-2502-3F; January (2009).
35. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
36. Ramamurthy, T.,“Strength and modulus responses of anisotropic rocks, ”In Comprehensive Rock Engineering, Vol. 1. Fundamentals, Pergamon Press, Oxford, pp.313-329 (1993).
37. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412(2001).
38. Tien, Y.M., Kuo, M. C., and Lu, Y.C., “Chapter 16: Failure criteria for transversely isotropic rock,” Rock Mechanics and Engineering, Volume 1: Principles, Ed. Feng, X.T., CRC Press, London, pp. 451-477(2016).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2019-11-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明