![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:14 、訪客IP:13.58.228.206
姓名 陳孜昊(Tzu-Hao Chen) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 動態地磅設址及路段禁行策略最佳化之研究 相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 ( 永不開放)
摘要(中) 交通管理單位為維護道路鋪面,需長期支出鉅額預算以確保其品質,而陸運車種中,對鋪面破壞最嚴重的車種為卡車,且卡車業者又常以超載的方式,試圖最大化其營運利潤,因此,管理者需針對超重卡車制定出一套管理準則,用以規範卡車業者,並減緩卡車對路面環境與鋪面破壞情形。目前國外多使用動態地磅做為管理超重卡車的策略,而現今由於科技進步,卡車業者易於尋找最小成本路徑,且實務上除了動態地磅之外,還可增添更多道路管理策略,故本研究考量將路段禁行概念,納入規劃管理超重卡車的範疇,並對新增的超重卡車管理策略做探討,使將來決策者能有效率地規劃不同策略之位址。
本研究為模擬實務中交通管理單位與卡車業者交互之行為,利用數學規劃方法與網路流動技巧,發展雙層數學規劃模型,目標為最小化管理單位維護道路破壞成本,與道路服務水準降低所致之管理成本。模式求解方面,本研究為模擬管理者選址之時決策方式,上層使用數學規劃模式並透過套裝軟體CPLEX求解,下層則採用最短路徑演算法求解,將兩者結合後,發展多回合啟發解法。輸入資料部分,本研究參考內華達州之模擬路網進行範例測試,測試結果顯示,部分道路禁行或關閉部分車道後,管理者所需支出之道路維護成本,相較以往僅考量設置地磅策略時多半較低,而求解效果良好,並對輸入資料的參數進行調整,進行敏感度與方案分析,期能供未來管理者於不同情境下,在輸入參數部分,做出有效之調整與後續決策。摘要(英) As far as road administration is concerned, the overweight trucks could result in serious damage to roads. Road administration need to reduce the negative costs caused by truckers; as a consequence, the government should enact relevant laws. To solve the problem, weight-in motion has been widely discussed in recent years. As a result of the well developed technology of today, truckers would drive on the minimum cost roads easily instead of k-th shortest path. This thesis presented multiple strategies of road traffic management based on the concept of restricted traffic lane and road closed.
This thesis employs mathematical programming methods and network flow techniques to develop a Bi-Level mathematical programming method. The upper level aims to minimize the
damage caused by overweight truckers’ evasive behavior and the additional cost incurred from the decrease of level of service. The lower level model simulates truckers will choose the minimum cost roads according to the deployment of several strategies of road traffic management. Due to the difficulty in solving the mathematical programming method, this thesis performed heuristic to solve the bi-level model efficiently. This thesis not only evaluated model though imitated Nevada network but conducted different stages of sensitivity analysis. The result showed that the combined three strategies outperform using weigh-in-motion. It is hoped
that the model will help road administration to make decision efficiently in the future.關鍵字(中) ★ 卡車動態地磅
★ 限制部分車道
★ 服務水準
★ 雙層數學規劃
★ 啟發解法關鍵字(英) ★ Weigh-In-Motion
★ Road closed
★ Level of service
★ Bi-Level
★ Heuristic論文目次 摘 要 .................................................................................................................................... I
ABSTRACT ............................................................................................................................. II
誌 謝 ................................................................................................................................. III
目 錄 ................................................................................................................................. IV
表 目 錄 ............................................................................................................................ VII
圖 目 錄 ............................................................................................................................. IX
第一章 緒論 ........................................................................................................................ 1
1.1 研究背景與動機 ........................................................................................................ 1
1.2 研究目的與範圍 ........................................................................................................ 2
1.3 研究方法與流程 ........................................................................................................ 3
第二章 卡車相關文獻 ........................................................................................................ 4
2.1 卡車資料相關文獻 .................................................................................................... 4
2.1.1 卡車造成路面之破壞 ........................................................................................ 5
2.1.2 卡車之旅行成本 ................................................................................................ 6
2.1.3 卡車之相關法規 ................................................................................................ 7
2.2 動態地磅相關文獻 .................................................................................................... 8
2.3 選址最佳化相關文獻 ................................................................................................ 9
2.4 雙層數學規劃問題 .................................................................................................. 12
2.5 運輸網路相關文獻 .................................................................................................. 14
2.6 文獻評析 .................................................................................................................. 16
第三章 模式構建 .............................................................................................................. 17
3.1 模式假設 .................................................................................................................. 18
3.2 數學定式 .................................................................................................................. 20
3.2.1 目標式、限制式說明 .............................................................................................. 24
3.3 模式討論 .................................................................................................................. 27
3.4 模式測試 .................................................................................................................. 28
3.5 模式求解流程 .......................................................................................................... 30
3.5.1 模式輸出資料 .................................................................................................. 33
3.6 小結 .......................................................................................................................... 34
第四章 範例測試 .............................................................................................................. 35
4.1 輸入資料分析 .......................................................................................................... 35
4.1.1 卡車資料設計 .................................................................................................. 36
4.1.2 動態地磅設置之成本評估 .............................................................................. 36
4.1.3 禁行卡車策略之成本評估 .............................................................................. 36
4.1.4 關閉部分車道策略之成本評估 ...................................................................... 37
4.1.5 卡車業者行駛成本 .......................................................................................... 37
4.1.6 問題規模 .......................................................................................................... 37
4.1.7 電腦演算環境 .................................................................................................. 38
4.1.8 求解參數設定 .................................................................................................. 38
4.2 測試範例分析 .......................................................................................................... 40
4.3 敏感度測試 .............................................................................................................. 49
4.4 方案分析 .................................................................................................................. 52
4.4.1 服務水準權重之測試 ...................................................................................... 53
4.4.2 輸入不同策略總數限制 .................................................................................. 60
4.4.3 比較各策略實施種類 ...................................................................................... 69
4.5 小結 .......................................................................................................................... 71
第五章 結論與建議 .......................................................................................................... 72
5.1 結論 .......................................................................................................................... 72
5.2 建議 .......................................................................................................................... 73
5.3 貢獻 .......................................................................................................................... 74
參考文獻 .................................................................................................................................. 75
附錄 .......................................................................................................................................... 79
附錄一、卡車輸入資料(一) ................................................................................................ 79
附錄二、卡車輸入資料(二) ................................................................................................ 81
附錄三、關閉節線之優先順序 .......................................................................................... 84
附錄四、關閉部分道路之優先順序 .................................................................................. 96參考文獻 1. 公路法, 2017。
2. 汽車燃料使用費徵收制度之研究, 2018。
3. 張亦寬「以雙層次數學規劃建構旅客需求導向之票價設計模式-以台灣高鐵為
例」,碩士論文,國立成功大學交通管理學系碩博士班, 2004。
4. 道路交通管理處罰條例, 2018。
5. 劉佳豪「動態地磅載重偵測系統設置之研究」,碩士論文,國立中央大學土木工程
研究所, 2000。
6. 顏上堯、陳俊穎、王領,「現有道路系統下通勤型自行車道初步路網設置之研
究」,運輸學刊, 26 卷, 4 期, 頁. 529-553, 2014。
7. Allen, G., Moruza, A. and Diefenderfer, B., “Oversize and overweight vehicle studies”,
Virginia Department of Transportation, 2010.
8. AlGadhi S.A.H. “Optimizing Truck Weigh Stations’ Locations on the Highway
Network of Saudi Arabia”, Journal of King Saud University, Vol. 14, Issue 2 , pp. 147-
163, 2002.
9. Arslan, O.,Jabali, O., Laporte, G., “ Exact Solution of the Evasive Flow Capturing
Problem”, Operations Research, Vol. 66, Issue 6, pp. 1457-1759, 2018
10. Besinovic, N., Markovia, N. and Schonfeld, P., “Optimal Allocation of Truck
Inspection Stations Based on k-Shortest Paths”, in Proc. 92th Annu. Meeting Transp.
Res. Board, Washington, DC, USA, pp.13-3123, 2013.
11. Barnes, G. and Langworthy, P., “The Per-mile Costs of Operating Automobiles and
Trucks”, Humphrey Institute of Public Affairs University of Minnesota, 2003.
12. Besinovic N., Markovic, N., and Schonfeld, P., “Location of Truck Inspection Stations
Based on Stochastic Flows”, Presented at 91st Annual Meeting of Transportation Research Board, Washington, D.C, 2012.
13. Castelli, L., Labbe, M. and Violin, A., “A Network Pricing Formulation for the revenue
maximization of European Air Navigation Service Providers” Transportation Research
Part C:Emerging Technologies, Vol. 33, pp. 214-226, 2013.
14. Cheng, E.W. L., Li, H. and Yu, L., “A GIS approach to shopping mall location
selection”, Building and environment Vol. 42, pp. 884-892, 2007.
15. Darayi, M., Barker, K. and Santos, J. R., “ Component Importance Measures for Multi-
Industry Vulnerability of a Freight Transportation Network”, Networks and Spatial
Economics Vol.17, Issue 4, pp. 1111-1136, 2017.
16. Das, A. K. and Chilukuri, B. R., “ A Network Planning Approach for Truck Restriction
in Heterogeneous Traffic”, 2019 11th International Conference on Communication
Systems & Networks, Bengaluru, India, India, 2019.
17. Forkenbrock, D. J., ”External Costs of Intercity Truck Freight Transportation.”, Public
Policy, Center, University of Iowa, Iowa City, USA, 1999.
18. Ganin, A. A., Kitsak, M., Marchese, D., Keisler, J. M., Seager, T., and Linkov, I.,
“ Resilience and efficiency in transportation networks” , Science Advances, Vol. 3, pp.
1-9, 2017.
19. Mallela, J”Guide for the Design of New and Rehabilitated Pavement Structures:
Phase II, NCHRP 1-37A”, National Cooperative Highway Research Program,
Transportation Research Board, National Research Council, 2002.
20. Golias, M., M., Saharidis, G., K., D., Boile, M. and Theofanis, S., “Scheduling of
Inbound Trucks at a Cross-Docking Facility: Bi-Objective VS Bi-Level Modeling
Approaches” International Journal of Information Systems and Supply Chain
Management5, Vol 5, Issue 1, pp. 20-37, 2012.
21. Holguín-Veras, J. , Leal, J. A., Sánchez-Diaz, I., Browne, M. and Wojtowicz, J., “ State
of the art and practice of urban freight management: Part I: Infrastructure, vehicle-
related, and traffic operations”, in press, 2018.
22. Liimatainen, H., Vliet, O.V. and Aplyn, D., “The potential of electric trucks – An
international commodity-level analysis”, Applied Energy, Vol. 236, pp. 804-814, 2019.
23. Lu, C., C., Yan, S., Ko., H., C. and Chen., H., J., “ A Bilevel Model With a Solution
Algorithm for Locating Weigh-In-Motion Stations”, IEEE Transactions on Intelligent
Transportation Systems, Vol.19, Issue 2,pp.380-389,2018.
24. Lu, J., Shi, C. and Zhang, G., “On bilevel multi-follower decision making: General
framework and solutions” Information Sciences, Vol. 176, Issue 11, pp. 1607-1627,
2006.
25. Marković, N., Ryzhov, I., O. and Schonfeld, P., “ Evasive flow capture: Optimal
location of weigh‐in‐motion systems, tollbooths, and security checkpoints” Networks,
Vol. 65, Issue 1, pp. 22-42, 2015.
26. Marković, N., Ryzhov, I., O. and Schonfeld, P., “ Evasive flow capture: A multi-period
stochastic facility location problem with independent demand” European Journal of
Operational Research, Vol. 257, Issue2, pp.687-703, 2017.
27. Santero N., Nokes, W. and Harvey, J., ” Virtual Weigh Stations: The Business Case.
Technical Memorandum”, Pavement Research Center, Institute of Transportation
Studies, University of California, Berkeley, 2005.
28. Selmica, M., Teodorovica, D. and Katarina, V., “Locating inspection facilities in traffic
networks:an artificial intelligence approach”, Transportation Planning and
Technology, Vol. 33, Issue 6, pp. 481-493, 2010.
29. Sinha, A., Malo, P. and Deb, K., “ A Review on Bilevel Optimization: From Classical
to Evolutionary Approaches and Applications”, IEEE Transactions on Evolutionary
Computation, Vol. 22, Issue 2, pp.276-295, 2018.
30. Tong, L., C., Zhou, L., Liu, J. and Zhou, X.,“ Customized bus service design for jointly
optimizing passenger-to-vehicle assignment and vehicle routing”, Transportation
Research Part C, Vol. 85, pp.451-475, 2017
31. Tan, J., Liu, G., Dai, R. and Wang, Z., “ Bi-level charging station planning for
integrated power distribution and transportation system ”, IEEE Conference on Energy
Internet and Energy System Integration, pp. 1-5, 2017
32. Wu, D., Zhao, J., Liu, H. and Yuan, C., “ The assessment of damage to Texas highways
due to oversize and overweight loads considering climatic factors”, International
Journal of Pavement Engineering, Vol. 20, Issue 7, pp. 853-65, 2019.
33. Wu, Y., N., Yang, Y., S., Feng, T., t., Kong, L., N., Liu, W. and Fu, L., J., “Macro-site
selection of wind/solar hybrid power station based on Ideal Matter-Element Model”,
International Journal of Electrical Power & Energy Systems, Vol. 50, pp. 76-84, 2013.
34. Xu, J., Tu, Y. and Lei, X., “Applying Multiobjective Bilevel Optimization under Fuzzy
Random Environment to Traffic Assignment Problem:Case Study of a Large-Scale
Construction Project” Journal of Infrastructure Systems, Vol. 20, Issue 3, 2013.
35. Yang, X., Bian, M., Chen, L. and Gao, Z., “ A numerical analysis based optimization
method for location selection for planning residential areas in grid transportation
networks”, Automatika, Vol. 58, Issue 2, pp.460-472, 2017.
36. Zhao H., Burke A. and Miller M., “Analysis of Class 8 truck technologies for their fuel
savings and economics”, Transportation Research Part D: Transport and Environment,
Vol.23, pp. 55-63, 2013.
指導教授 顏上堯(Shang-Yao Yan) 審核日期 2019-8-6 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare