以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:99 、訪客IP:18.226.159.73
姓名 陳耀基(Dicky Pratama Soegianto) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱
(Centrifuge Modelling on Dip-Slip Fault Rupture Propagation in Multiple Soil Strata)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 活動斷層錯動會對近斷層的結構物與地下基礎造成永久變位,例如1999年台灣的集集地震、土耳其的Kocaeli地震和Duzce地震和2008年汶川大地震,都造成人民生活上嚴重的危害,也讓人們開始注意地盤中剪裂帶的發展,以及斷層破裂帶上鄰近結構物與地下基礎的影響。自然沉積的地盤非均勻且非均質,若表層是沉積土壤而底層是較堅硬的岩層,斷層錯動過程中,剪裂帶通過岩層與表土層也會引發一連串複雜的交互行為。
本研究以離心模型模擬正斷層與逆斷層通過在地盤底部為軟岩層、地表砂土層時的剪裂帶與地表位移的發展,共進行八組試驗。軟岩層使用水泥拌合砂土混合而成的複合土層進行模擬,試驗前以無圍壓縮實驗與直剪試驗,評估養護七天後不同水泥比例下之土層強度。本研究使用砂土水泥混合比例為5% 之材料模擬軟岩層,單壓強度為0.975 MPa、摩擦角為43.5度、凝聚力為148 kPa;上覆土層為石英矽砂,摩擦角為37度、單位重15.6 kN/m3 。模型總高度為100毫米,於80 g之離心力場中模擬總厚度8公尺之土層。
試驗結果顯示:(1)岩層與總土層厚度比,為引發正斷層與逆斷層錯動剪裂影響範圍的主要因素。正斷層錯動時,隨著岩層厚度的增加,影響區域也增加;在土層厚度比30% 時,斷層破裂帶影響範圍最大。(2)軟岩層與砂層的厚度比值會影響軟岩層裂隙發展。隨著砂層厚度減少,裂隙越往遠處發展。(3)正斷層與逆斷層之試驗結果皆顯示土層表面變形與底層土壤特性具有相關性。(4)岩石層底層由於裂隙傳遞範圍大而有較大變形;砂土層底層由於裂隙傳遞範圍小而有較小變形。摘要(英) Permanent ground displacement due to the fault slip is a concern to infrastructures adjacent to the active fault. For instance, severe and serious damages happened during the big earthquake like Chi-Chi earthquake in Taiwan and Kocaeli and Duzce earthquake in Turkey at 1999. These 3 disasters are the turning point on put more concern on the behavior of the fault slip to either to the soil deposit itself or the building and infrastructure located in the fault affected zone. Furthermore, natural soil deposit is rarely found to be homogeneous and uniform, some part of the soil has higher strength layers, like soft rock stratum, at the bottom of the soil strata, causing some complex behavior while the fault rupture is propagating through both soft rock and soil strata.
In this study, 8 centrifuge modelling test simulating both reverse fault and normal fault are conducted to observe mechanism of soft rock base layer affects the whole soil deposit surface. The soft rock layer is simulated by using a mixture of accelerated sand and cement. Both uniaxial compression tests and direct shear tests are conducted to evaluate the strength of the different proportion of cement. All the mixture is cured for 7 days before it tested. The 5% cement mixture is selected due to its uniaxial compression strength of 0.975 MPa, which can simulate soft rock and have a brittle mode as the post-failure behavior. The Mohr–Coulomb failure criterion is 43.5 degrees and 148 kPa of friction angle and the cohesion. The upper layer stratum is pluviated quartz sand with 37 degrees of friction angle at unit weight of 15.6 kN/m3. The model have different thickness ratio between soft rock layer and sandy layer with 100 mm total soil deposit thickness, which is corresponded to 8 meters in the prototype scale in 80 g centrifugal acceleration field.
Based on the experiments results, it shows that: (1) The thickness ratio of the rock stratum plays a major role for the length of the affected zone in both reverse fault and normal fault simulation; although, the affected zone for the normal fault reach maximum length when the sandy soil ratio at 30%. (2) The thickness ratio between the soft rock layer and sandy soil layer affects the crack propagation in soft rock stratum, the crack propagates to wider area as thinner sandy soil thickness. (3) In both normal fault and reverse fault slip, the surface distortion is dependent on type of material at the bottom layer. (4) The deformation of the rock-based strata has the widest, due to its crack propagation and the sand based layer has the narrowest deformation zone, due to its narrow rupture propagation at based layer.關鍵字(中) ★ 地工離心機
★ 正斷層
★ 逆斷層
★ 複合土層關鍵字(英) ★ Centrifuge modelling
★ normal fault
★ reverse fault
★ multiple soil strata論文目次 English Abstract ii
Chinese Abstract ii
Acknowledgement iii
Table of Content iv
Table of Table vi
Table of Figure viii
CHAPTER 1 INTRODUCTION 1
1.1. Research Motivation 1
1.2. Aim of Research 2
1.3. Content of Research 2
CHAPTER 2 LITERATURE REVIEW 4
2.1. Fault Introduction 4
2.2. Historical Cases 4
2.3. Previous Study 5
CHAPTER 3 TESTING APPARATUSES AND TESTING METHODOLOGY 21
3.1. Centrifuge Modelling Principle 21
3.2. Testing Equipment 22
3.2.1. NCU Geotechnical Centrifuge Facilities 22
3.2.2. Data Acquisition System 22
3.2.3. Fault Simulation Container and Control System 22
3.2.4. Surface Scanning Device 23
3.2.5. LVDT 23
3.2.6. Camera System 23
3.3. Testing Material 27
3.3.1. Fine Silica Sand 27
3.3.2. Type-1 Cement 28
3.3.3. Cement Accelerator 28
3.4. Testing Methodology 30
CHAPTER 4 TEST RESULTS 37
4.1. Element Test Result 37
4.1.1. Uniaxial Compression Test Results 37
4.1.2. Direct Shear Test 37
4.2. Centrifuge modelling of Fault Propagation 45
4.2.1. Centrifuge Modelling of Reverse Fault Propagation 47
4.2.2. Centrifuge Modelling of Normal Fault Propagation 94
CHAPTER 5 DISCUSSIONS 138
5.1. Reverse Fault Simulation 138
5.2. Normal Fault Simulation 147
5.3. Comparison with Previous Study 155
CHAPTER 6 CONCLUSIONS 166
6.1. Conclusion 166
6.2. Future Works 167
Question and Answer 169
REFERENCES 170參考文獻 [1] Ahmadi, M., M. Moosavi, and M.K. Jafari, “Experimental investigation of reverse fault rupture propagation through wet granular soil”, Engineering Geology, Vol. 239: pp. 229-240 (2018).
[2] Anastasopoulos, I. and G. Gazetas, “Foundation–structure systems over a rupturing normal fault: Part I. Observations after the Kocaeli 1999 earthquake”, Bulletin of Earthquake Engineering, Vol. 5(3): p. 253-275, (2007).
[3] Anastasopoulos, I., et al., “Fault rupture propagation through sand: Finite-element analysis and validation through centrifuge experiments”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 8, pp. 943-958 (2007).
[4] Anastasopoulos, I., et al., “Normal Fault Rupture Interaction with Strip Foundations”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 3, pp. 359-370, (2009).
[5] Ashtiani, M., A. Ghalandarzadeh, and I. Towhata, “Centrifuge modelling of shallow embedded foundations subjected to reverse fault rupture”, Canadian Geotechnical Journal, Vol. 53, No. 3, pp. 505-519 (2016)
[6] Baziar, M.H., et al., “Centrifuge modelling of interaction between reverse faulting and tunnel”, Soil Dynamics and Earthquake Engineering, Vol. 65, pp. 151-164 (2014).
[7] Bransby, M., et al., “Centrifuge modelling of reverse fault-foundation interaction”, Bulletin of Earthquake Engineering, Vol. 6, No. 4, pp. 607-628, (2008).
[8] Bransby, M., M. Davies, and A. Nahas, “Centrifuge modelling of normal fault-foundation interaction”, Bulletin of Earthquake Engineering, Vol. 6, No. 4, pp. 585-605 (2008).
[9] Burridge, P. B., Scott, R.F., Hall, J.F., ”Centrifuge Study of Faulting Effects on Tunnel”, Journal of Geotechnical Engineering, Vol. 115 (7), pp. 949-967 (1989)
[10] Collins, B. D., Sitar, N., “Geotechnical Properties of Cemented Sands in Steep Slopes”, Journal of Geotechnical and Geoenviromental Engineering, Vol 139 (10), pp. 1359-1366 (2009)
[11] Chang, Y.Y., et al., “Use of centrifuge experiments and discrete element analysis to model the reverse fault slip”. International Journal of Civil Engineering, Vol. 11, No. 2b, pp. 79-89 (2013)
[12] Chen, Y.-G., et al., "Surface rupture of 1999 Chi-Chi earthquake yields insights on active tectonics of central Taiwan", Bulletin of the Seismological Society of America, Vol. 91: p. 977-985 (2001).
[13] Dobereiner, L., Engineering Geology of Weak Sandsotnes, Ph. D Dissertation, University of London, 1984
[14] Faccioli, E., et al., "Fault rupture–foundation interaction: selected case histories", Bulletin of Earthquake Engineering, Vol. 6, No. 4, pp. 557-583 (2008).
[15] Frank, R., C. Bauduin, R. Driscoll, M. Kavvadas, N. K. Ovesen, T. Orr, B. Schuppener and H. Gulvanessian, "Designers′ Guide to EN 1997-1 Eurocode 7: Geotechnical Design – General Rules".(2015)
[16] Huang, C., Chan, Y.C., Hu, J.C., Angelier, J., Lee, J.C., “Detailed surface co-seismic displacement of the 1999 Chi-Chi earthquake in western Taiwan and implication of fault geometry in the shallow subsurface,” Journal of Structural Geology, Vol. 30, pp. 1167-1176, (2008).
[17] Jalali, H. H., Rofooei, F. R., Attari, N. K. A., Samadian, M., "Experimental and finite element study of the revere faulting effects on buried continuous steel gas pipelines", Soil Dynamics and Earthquake Engineering, Vol. 86, pp. 1-14 (2016)
[18] Kelson, K.I., et al., "Representative styles of deformation along the Chelungpu fault from the 1999 Chi-Chi (Taiwan) earthquake: Geomorphic characteristics and responses of man-made structures", Bulletin of the Seismological Society of America, Vol. 91, No. 5: p. 930-952 (2001).
[19] Kanji, M. A., "Critical Issues in soft rocks", Journal of Rock Mechanics and Geotechnical Engineering, Vol. 6, pp. 186-195 (2014)
[20] Kawashima, K., et al., "Reconnaissance Report on Damage of Bridges in 2008 Wenchuan, China, Earthquake", Journal of Earthquake Engineering, Vol. 13, No. 7, pp. 965-996 (2009).
[21] Lin, M.L, Chung, C.F., Jeng, F. S., Yao, T. C., "The deofrmation of overburden soil induced by thrust faulting and its impact on underground tunnels", Engineering Geology, Vol. 92, pp. 110-132 (2007)
[22] Rojhani, M., et al., "Centrifuge modelling of buried continuous pipelines subjected to reverse faulting". Canadian Geotechnical Journal, Vol. 49, No. 6, pp. 659-670 (2012).
[23] Taylor, R.N., “Centrifuges in modelling: principles and scale effects,” Geotechnical centrifuge technology, pp.19-33, 1995.
[24] Yao, C.F. and J. Takemura, "Using laser displacement transducer scanning technique in centrifuge modelling of reverse fault-foundation interaction", Soil Dynamics and Earthquake Engineering, Vol. 121, pp. 219-232 (2019).
[25] 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形」,博士論文,國立中央大學土木工程學系,中壢(2013)。
[26] 陳榮華,「以離心模型模擬正斷層及逆斷層通過黏土地層引致的地表變形特性」,碩士論文,國立中央大學土木工程學系,中壢(2013)。
[27] 張 庭 傑,「以離心模型模擬正斷層及逆斷層通過複合土層引致的地表變形特性」,碩士論文,國立中央大學土木工程學系,中壢(2014)。指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2020-6-12 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare