參考文獻 |
[1] J. Czochralski, “Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,” Zeitschrift fur Physikalische Chemie, Vol.92, pp. 219-221, 1918.
[2] P. E. Tomaszewski: Jan Czochralski Restored, Oficyna Wydawnicza ATUT Wroclaw 2013.
[3] Reinhard Uecker, “The Historical Development of the Czochralski Method,” Journal of Crystal Growth, Vol. 401, pp. 7-24, 2014.
[4] H. Walther, Rev. Sci. Instrum. Vol. 8, pp. 406, 1937.
[5] 林明獻,矽晶圓半導體材料技術,全華圖書,台北,民國九十六年
[6] FEMAG直拉法單晶矽生長數值模擬方案,中仿仿真智領創新
http://solution.cntech.com/femag/201412/femag_simulation.html, accessed on April 23, 2019.
[7] O. Anttila, “Czochralski growth of silicon crystals”, Silfex Incorporated-A division of Lam Research Corporation, Eaton, OH, USA
[8] W.C. Dash, “Growth of silicon crystals free from dislocations”, J. Appl. Phys. Vol.30, pp.459, 1959.
[9] Fumio Shimura, Single-Crystal Silicon: Growth and Properties, Springer International Publishing, Japan, 2017.
[10] H. P Utech and M. C. Flemings, “Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field”, Journal of Applied Physics, Vol. 37, pp. 2021, 1966.
[11] H. A. Chedzey and D. T. J. Hurle, “Avoidance of Growth-striae in Semiconductor and Metal Crystals grown by Zone-melting Techniques”, Nature, Vol. 210, pp. 933, 1966.
[12] U. P. Utech and M.C. Flemings, Journal of Applied Physics, Vol. 37, pp. 2021, 1966.
[13] H. A. Chedzey and D. T. J Hurle, Nature, Vol. 210, pp. 933, 1966.
[14] K. Hoshikawa, X. Huang,“Oxygen transport during Czochralski silicon crystal growth,”Materials Science and Engineering B, Vol. 72, pp. 73-79, 2000.
[15] Y. S. Lee, C.H. Chun,“Effects of a cusp magnetic field on the oscillatory convection coupled with crucible rotation in Czochralski crystal growth,”Journal of Crystal Growth, Vol.197, pp. 307-316, 1999.
[16] K. Seigo, M. Yoshiaki, K. Masaru, I. Takashi, “ Thermally induced microdefects in Czochralski-grown silicon: nucleation and growth behavior,” Jpn. J. Appl. Phys. Vol. 21, pp. 1–12, 1982.
[17] Y. Nagai, S. Nakagawa, K. Kashima, “ Crystal growth of MCZ silicon with ultralow carbon concentration,” Journal of Crystal Growth, Vol.401, pp.737–739, 2014.
[18] Wen Lin (AT and T Bell labs), “The incorporation of oxygen into silicon crystals, ”
Semiconductors and Semi-Metals, Academic Press, New York, Vol. 42 pp.9-52, 1994.
[19] D.E. Bornside, R.A. Brown, “The Effects of Gas-Phase Convection on Carbon Contamination of Czochralski-Grown Silicon,” J. Electrochem. Soc. Vol.142, pp.2790, 1995.
[20] B. Gao, K. Kakimoto, “Global simulation of coupled carbon and oxygen transport in a Czochralski furnace for silicon crystal growth,” Journal of Crystal Growth, Vol. 312, pp. 2972-2976, 2010.
[21] Y. Nagai, S. Nakagawa, K. Kashima, “Crystal Growth of MCZ Silicon with Ultralow Carbon Concentration,” Journal of Crystal Growth, Vol. 401, pp. 737-739, 2014.
[22] Xin Liu, Bing Gao, Koichi Kakimoto, “Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 417, pp. 56-64, 2014.
[23] Xin Liu, Satoshi Nakano, K. Kakimoto,“Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 468, pp. 595-600, 2017.
[24] Xin Liu, Bing Gao, Satoshi Nakano, K. Kakimoto, “Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 474, pp. 3-7, 2017.
[25] Xin Liu, Xue-Feng Han, Satoshi Nakano, K. Kakimoto, “Effect of controlled crucible movement on melting process and carbon contamination in Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 483, pp. 241-244, 2018.
[26] Thi Hoai Thu Nguyen, Jyh Chen Chen, Chieh Hu, Chun Hung Chen, “Numerical simulation of heat and mass transfer during Czochralski silicon crystal growth under the application of crystal-crucible counter- and iso-rotations,” Journal of Crystal Growth, Vol. 507, pp. 50-57, 2019.
[27] 鄧應揚,「多晶矽太陽能電池晶碇固化生長之熱流場研究」,國立中央大學,博士班資格考計畫書,民國 97 年。
[28] T. Nozaki, Y. Yatsurugi, and N. Akiyama, “Concentration and Behavior of Carbon in Semiconductor Silicon,” J. Electrochem. Soc., Vol. 117, pp. 1566–1568, 1970.
[29] A.D. Smirnov, V.V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals,” Journal of Crystal Growth, Vol. 310, pp.2970- 2976, 2008.
[30] Y. Y. Teng, J. C. Chen, C. W. Lu, C. Y. Chen, “Numerical and experimental study for improving the concavity of the crystalline front in multicrystalline silicon ingots during the directional solidification process,” solidification process, submit to Solar Energy Material & Solar Cells.
[31] O. R. Asadi Noghabi and M. M′Hamdi, “Sensitivity analyses of furnace material properties in the Czochralski crystal growth method for silicon”, Measurement Science and Technology, Vol. 24, 2013. |