博碩士論文 106323058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.142.35.236
姓名 邱琮祐(Chung-Yu Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 柴氏生長單晶矽應用晶體坩堝同向與反向旋轉 之碳雜質傳輸數値分析
(Numerical simulation of Carbon transport during Czochralski silicon crystal growth under the application of crystal-crucible counter- and iso-rotations)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Czochralski法是生長高品質矽單晶的重要技術。其中矽晶片的電阻率和差排密度與晶棒中雜質有很重要關係,特別是氧和碳的濃度。因此雜質控制便成為Czochralski法製造單晶矽中的重要問題,然而矽晶棒中的碳濃度流動與設定參數之間的關係在現存文獻中尚未確立,在這項研究中,軸對稱數值模型用於研究Cz過程中碳的質量傳遞現象,考慮晶體和坩堝的不同轉速和方向,研究不同流動模式下的質量傳遞現象。
我們研究晶體和坩堝旋轉的哪種組合具有較低的碳濃度,並分別進行晶體坩堝同向與反向旋轉,找到造成碳濃度降低的物理機制。我們發現晶體旋轉10 rpm和反向坩堝旋轉3 rpm具有最低的碳濃度。而碳傳輸的行為與熔融矽中的對流和晶體下方的速度有關,介面的溫度、熔湯氧濃度也會影響碳雜質溶入熔湯的多寡。其中有三個重要的渦流,首先是Taylor-Proudman cell在晶體 - 熔體界面下,它是碳濃度重要的來源。其次,浮力渦流將碳帶入熔體,熔湯的自由表面的範圍成為一個重要因素。這是因為碳在浮力渦流中也會再透過自由液面蒸發,如果被其他渦流抑制,碳便不會在一開始時蒸發而直接流入下個渦流。第三,二次渦流位於Taylor-Proudman cell和浮力渦流之間,適當大小的二次渦流能使碳滯流於此渦流,使碳有更多機會流回到浮力渦流讓碳蒸發。
摘要(英) Czochralski (Cz) method is widely used for the production of high quality silicon single crystal. Under high temperature condition of growth process, the undesirable impurities, such as oxygen and carbon, enter the silicon melt and their content strongly affects the resistivity and the dislocation density of the silicon wafer. A precise control of these impurities at a low concentration and uniform distribution, therefore, has played an important role for improving the quality of silicon crystals, especially large-sized crystals. To our best knowledge, there are few publications showing the effects of the operation parameters of CZ growth process on carbon concentration. In this study, a 2D axisymmetric numerical model is used to study the heat and carbon transport during the growth of a 6 inch-diameter silicon ingot. Different rotation speed and direction of the seed and crucible are considered to investigate their effects on the variation of heat, flow, and carbon characteristics.
The numerical simulations show that the carbon concentration gets lowest when the counter rotation rates of seed and crucible are 10 rpm and -3rpm, respectively. The behavior of carbon movement is related to the melt convection and the velocity under crystal-melt interface. While the temperature on free melt surface and oxygen in the melt will affect the quantity of carbon. The flow structure is included three main vortices: Taylor-Proudman cell (1), under the crystal-melt interface, buoyancy driven cell near the crucible wall (3), and the secondary cell (2) between (1) and (3). It was found that the carbon atoms are carried by cell (3) into the silicon melt. The carbon atoms are got out of the melt from the free melt surface. The larger effective evaporation area may reduce the carbon content in the melt due to the larger evaporation rate of carbon. Moreover, the secondary vortex (2) also affects the carbon transportation. Appropriate cell (2) may keep the carbon atoms stay longer in the melt and buoyancy cell (3) is easier to bring them to the free melt surface.
關鍵字(中) ★ 單晶矽
★ 柴式法
★ 碳濃度
★ 數值模擬
關鍵字(英) ★ Single crystalline-silicon
★ CZ
★ Carbon concentration
★ numerical simulation
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1-1前言 1
1-2 柴式長晶法(Cz)介紹 1
1-3文獻回顧 4
1-4研究目的與動機 5
第二章 物理模型與系統描述 10
2-1物理系統 10
2-2基本假設 10
2-3數學模型與邊界條件 11
2-3-1統御方程式 11
2-3-2熱場邊界條件 12
2-3-3流場邊界條件 13
2-3-3 碳氧雜質邊界層 14
2-4紊流模型 16
2-5無因次參數式 17
第三章 研究方法 23
3-1數值方法 23
3-2雜質濃度求解 23
3-3網格測試 23
3-4收斂性測試 24
3-5數值與實驗結果驗證 25
第四章 結果與討論 31
4-1固定晶轉10rpm與堝轉反向旋轉搭配 31
4-1-1 反向固定晶轉10rpm流場與碳濃度之關係 32
4-1-2反向固定晶轉10rpm速度場與熱場對碳濃度之影響 32
4-1-3反向固定晶轉10rpm轉速搭配整體小結 32
4-2固定堝轉-3rpm與晶轉反向旋轉搭配 33
4-2-1 反向固定堝轉-3rpm流場與碳濃度之關係 33
4-2-2反向固定堝轉-3rpm速度場與熱場對碳濃度之影響 34
4-2-3反向固定堝轉-3rpm轉速搭配整體小結 34
4-3固定晶轉5rpm與堝轉同向旋轉搭配 34
4-3-1 同向固定晶轉5rpm流場與碳濃度之關係 35
4-3-2同向固定晶轉5rpm速度場與熱場對碳濃度之影響 35
4-3-3同向固定晶轉5rpm轉速搭配整體小結 35
4-4固定堝轉3rpm與堝轉同向旋轉搭配 36
4-4-1 同向固定晶轉3rpm流場與碳濃度之關係 36
4-4-2同向固定晶轉3rpm速度場與熱場對碳濃度之影響 36
4-4-3同向固定晶轉3rpm轉速搭配整體小結 37
4-5同向旋轉與反向旋轉最低碳濃度比較 37
第五章 結論與未來研究方向 64
參考文獻 65
參考文獻 [1] J. Czochralski, “Ein neues Verfahren zur Messung der Kristallisation geschwindigheit der Metalle,” Zeitschrift fur Physikalische Chemie, Vol.92, pp. 219-221, 1918.
[2] P. E. Tomaszewski: Jan Czochralski Restored, Oficyna Wydawnicza ATUT Wroclaw 2013.
[3] Reinhard Uecker, “The Historical Development of the Czochralski Method,” Journal of Crystal Growth, Vol. 401, pp. 7-24, 2014.
[4] H. Walther, Rev. Sci. Instrum. Vol. 8, pp. 406, 1937.
[5] 林明獻,矽晶圓半導體材料技術,全華圖書,台北,民國九十六年
[6] FEMAG直拉法單晶矽生長數值模擬方案,中仿仿真智領創新
http://solution.cntech.com/femag/201412/femag_simulation.html, accessed on April 23, 2019.
[7] O. Anttila, “Czochralski growth of silicon crystals”, Silfex Incorporated-A division of Lam Research Corporation, Eaton, OH, USA
[8] W.C. Dash, “Growth of silicon crystals free from dislocations”, J. Appl. Phys. Vol.30, pp.459, 1959.
[9] Fumio Shimura, Single-Crystal Silicon: Growth and Properties, Springer International Publishing, Japan, 2017.
[10] H. P Utech and M. C. Flemings, “Elimination of Solute Banding in Indium Antimonide Crystals by Growth in a Magnetic Field”, Journal of Applied Physics, Vol. 37, pp. 2021, 1966.
[11] H. A. Chedzey and D. T. J. Hurle, “Avoidance of Growth-striae in Semiconductor and Metal Crystals grown by Zone-melting Techniques”, Nature, Vol. 210, pp. 933, 1966.
[12] U. P. Utech and M.C. Flemings, Journal of Applied Physics, Vol. 37, pp. 2021, 1966.
[13] H. A. Chedzey and D. T. J Hurle, Nature, Vol. 210, pp. 933, 1966.
[14] K. Hoshikawa, X. Huang,“Oxygen transport during Czochralski silicon crystal growth,”Materials Science and Engineering B, Vol. 72, pp. 73-79, 2000.
[15] Y. S. Lee, C.H. Chun,“Effects of a cusp magnetic field on the oscillatory convection coupled with crucible rotation in Czochralski crystal growth,”Journal of Crystal Growth, Vol.197, pp. 307-316, 1999.
[16] K. Seigo, M. Yoshiaki, K. Masaru, I. Takashi, “ Thermally induced microdefects in Czochralski-grown silicon: nucleation and growth behavior,” Jpn. J. Appl. Phys. Vol. 21, pp. 1–12, 1982.
[17] Y. Nagai, S. Nakagawa, K. Kashima, “ Crystal growth of MCZ silicon with ultralow carbon concentration,” Journal of Crystal Growth, Vol.401, pp.737–739, 2014.
[18] Wen Lin (AT and T Bell labs), “The incorporation of oxygen into silicon crystals, ”
Semiconductors and Semi-Metals, Academic Press, New York, Vol. 42 pp.9-52, 1994.
[19] D.E. Bornside, R.A. Brown, “The Effects of Gas-Phase Convection on Carbon Contamination of Czochralski-Grown Silicon,” J. Electrochem. Soc. Vol.142, pp.2790, 1995.
[20] B. Gao, K. Kakimoto, “Global simulation of coupled carbon and oxygen transport in a Czochralski furnace for silicon crystal growth,” Journal of Crystal Growth, Vol. 312, pp. 2972-2976, 2010.
[21] Y. Nagai, S. Nakagawa, K. Kashima, “Crystal Growth of MCZ Silicon with Ultralow Carbon Concentration,” Journal of Crystal Growth, Vol. 401, pp. 737-739, 2014.
[22] Xin Liu, Bing Gao, Koichi Kakimoto, “Numerical investigation of carbon contamination during the melting process of Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 417, pp. 56-64, 2014.
[23] Xin Liu, Satoshi Nakano, K. Kakimoto,“Effect of the packing structure of silicon chunks on the melting process and carbon reduction in Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 468, pp. 595-600, 2017.
[24] Xin Liu, Bing Gao, Satoshi Nakano, K. Kakimoto, “Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 474, pp. 3-7, 2017.
[25] Xin Liu, Xue-Feng Han, Satoshi Nakano, K. Kakimoto, “Effect of controlled crucible movement on melting process and carbon contamination in Czochralski silicon crystal growth,” Journal of Crystal Growth, Vol. 483, pp. 241-244, 2018.
[26] Thi Hoai Thu Nguyen, Jyh Chen Chen, Chieh Hu, Chun Hung Chen, “Numerical simulation of heat and mass transfer during Czochralski silicon crystal growth under the application of crystal-crucible counter- and iso-rotations,” Journal of Crystal Growth, Vol. 507, pp. 50-57, 2019.
[27] 鄧應揚,「多晶矽太陽能電池晶碇固化生長之熱流場研究」,國立中央大學,博士班資格考計畫書,民國 97 年。
[28] T. Nozaki, Y. Yatsurugi, and N. Akiyama, “Concentration and Behavior of Carbon in Semiconductor Silicon,” J. Electrochem. Soc., Vol. 117, pp. 1566–1568, 1970.
[29] A.D. Smirnov, V.V. Kalaev, “Development of oxygen transport model in Czochralski growth of silicon crystals,” Journal of Crystal Growth, Vol. 310, pp.2970- 2976, 2008.
[30] Y. Y. Teng, J. C. Chen, C. W. Lu, C. Y. Chen, “Numerical and experimental study for improving the concavity of the crystalline front in multicrystalline silicon ingots during the directional solidification process,” solidification process, submit to Solar Energy Material & Solar Cells.
[31] O. R. Asadi Noghabi and M. M′Hamdi, “Sensitivity analyses of furnace material properties in the Czochralski crystal growth method for silicon”, Measurement Science and Technology, Vol. 24, 2013.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2019-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明