參考文獻 |
[1] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15 (2007) 4198-4204.
[2] S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim and Y. R. Shin, “Fabrication and photovoltaic property of ordered macroporous silicon,” Appl. Phys. Lett. 95 (2009) 143-119.
[3] D. M. Newman, M. L. Wears, M. Jollie and D. Chooand, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology 18 (2007) 205-301.
[4] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati and T. Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Appl. Mater. Interfaces 44 (2017) 38931-38942.
[5] J. Y. Ji, H. Q. Zhang, Y. Qiu, L. N. Wang, Y. Wang and L. Z. Hu, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays,” Appl. Surf. Sci. 292 (2014) 86-92.
[6] P. Bhattacharya, S. Gohil, J. Mazher, S. Ghosh and P. Ayyub, “Universal, geometry-griven hydrophobic behaviour of bare metal nanowire clusters,” Nanotechnology 19 (2008) 075709.
[7] B. Gattu, R. Epur, P. H. Jampani, R. Kuruba, M. Kanchan Datta and P. N. Kumta, “Silicon−carbon core−shell hollow nanotubular configuration high- performance lithium-ion anodes,” J. Phys. Chem. 121 (2017) 9662–9671.
[8] J. Zhang, Y. Zhang, T. Song, X. Shen, X. Yu, S. T. Lee, B. Sun and B. Jia, “High-performance ultrathin organic−inorganic hybrid silicon solar cells via solution-processed interface modification,” ACS Appl. Mater. Interfaces 9 (2017) 21723–21729.
[9] J. Y. Li, C. H. Hung and C. Y. Chen, “Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement,” Sci. Rep. 7 (2017) 17177.
[10] H. J. Syu, S. C. Shiu and C. F. Lin, “Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%,” Sol. Energy Mater. Sol. Cells 98 (2012) 267-272.
[11] Y. L. Li, P. P. Liang, X. Yang, H. Cai, Q. H. You, J. Sun, N. Xu and J. D.Wu, “Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism,” Mater. Lett. 134 (2014) 5-8.
[12] M. F. Hainey and J. M. Redwing, “Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications,” Appl. Phys. 3 (2016) 040806.
[13] H. L. Tsai, “Characteristics of silicon nanowire field electron emission,” Advanced Materials Research 652 (2013) 654-658.
[14] Y. L. Zhang, Z. Q. Fan, W. J. Zhang, Q. Ma, Z. Y. Jiang, and D. G. Ma, “High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles,” AIP Adv. 8 (2018) 055309.
[15] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner and A. Waag, “Production of vertical nanowire resonators by cryogenic‑ICP–DRIE,” Microsyst Technol 20 (2013) 759–767.
[16] B. Dev Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express. 4 (2014) 1345-1354.
[17] B. Ozdemir, M. Kulakci, R. Turan and H. E. Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,” Nanotechnology 22 (2011) 155606.
[18] H. D. Um, J. Y. Jung, H. S. Seo, K. T. Park, S. W. Jee, S. A. Moiz and J. H. Lee, “Silicon nanowire array solar cell prepared by metal induced electroless etching with a novel processing technology,” J. Appl. Phys. 49 (2010) 04DN02.
[19] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin and C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Curr. Appl. Phys. 13 (2013) 717-724.
[20] L. U. Vinzons, L. Shu, S. P. Yip, C. Y. Wong, L. L. H. Chan and J. C. Ho, “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Res. Lett. 12 (2017) 1–12.
[21] H. Cao, X. Li, B. Zhou, T. Chen, T. Shi, J. Zheng, G. Liu and Y. Wang, “On-demand fabrication of Si/SiO2 nanowire arrays by nanosphere lithography and subsequent thermal oxidation,” Nanoscale Res. Lett. 12 (2017) 105.
[22] P. Lianto, S. Yu, J. Wu, C.V. Thompson and W. K. Choi, “Vertical etching with isolated catalysts in metal-assisted chemical etching of silicon,” Nanoscale 4 (2012) 7532-7539.
[23] W.P.R. Liyanage and M. Nath, “CdS-CdTe heterojunction nanotube arrays for efficient solar energy conversion,” J. Mater. Chem. A 4 (2016) 14637-14648.
[24] M. Q. Xue, F. W. Li, D. Chen, Z. H. Yang, X. W. Wang and J. H. Ji, “High-oriented polypyrrole nanotubes for next-generation gas sensor,” Adv. Mater. 28 (2016) 8265–8270.
[25] S. J. Chen, W. L. Yang, J. J. Zhu, L. C. Fu, D. Y. Li and L. P. Zhou, “Preparation of highly-ordered lanthanum hexaboride nanotube arrays and optimizing its feld emission property by ion bombardment posttreatment,” J. Mater. Sci. Lett. 29 (2018) 10008–10015.
[26] Z. Zhang, L. Liu, T. Shimizu, S. Senz and U. Gösele, “Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template,” Nanotechnology 21 (2010) 055603.
[27] A. Convertino, M. Cuscunà and F. Martelli, “Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers,” Nanotechnology 23 (2012) 305602.
[28] R. Epur, P. J. Hanumantha, M. K. Datta, D. Hong, B. Gattu and P. N. Kumta, “A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity,” J. Mater. Chem. A 3 (2015) 11117-11129.
[29] J. Rong, X. Fang, M. Ge, H. Chen, J. Xu and C. Zhou, “Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode,” Nano Res. 6 (2013) 182–190.
[30] X. Huang, R. Gonzalez-Rodriguez, R. Rich, Z. Gryczynski and J. L. Coffer, “Fabrication and size dependent properties of porous silicon nanotube srrays,” Chem. Commun. 49 (2013) 5760.
[31] Z. Z. Lu, T. L. Wong, T. W. Ng and C. D. Wang, “Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries,” RSC Adv. 4 (2014) 2440.
[32] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Y. Duan, T. Yang, X. J. Zhang, C. J. Zheng and X. H. Zhang, “Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application,” Appl. Phys. Lett. 102 (2013) 163906.
[33] X. Xu, Q. Yang, N. Wattanatorn, C. Zhao, N. Chiang, S. J. Jonas and P. S. Weiss, “Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures,” ACS Nano 11 (2017) 10384–10391.
[34] H. Jeong, J. Lee, C. Bok, S. H. Lee and S. Yoo, “Fabrication of vertical silicon nanotube array using spacer patterning technique and metal-assisted chemical etching,” IEEE Trans. Nanotechnol. 16 (2017) 130–134.
[35] Y. Y. Kim, H. J. Kim, J. H. Jeong, J. Lee, J. H. Choi, J. Y. Jung, J. H. Lee, H. Cheng, K. W. Lee, and D. G. Choi, “Facile fabrication of silicon nanotube arrays and their application in Lithium ion batteries.” Adv. Eng. Mater., 18 (2016) 1349-1353.
[36] P. Doshi, G. E. Jellison and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt. 36 (1997) 7826.
[37] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1 (2007) 176–179.
[38] V. Trinh Pham, M. Dutta, H. Bui and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5 (2014) 045014.
[39] T. Kraus, D. Brodoceanu, N. Pazos-Perez and A. Fery, “Dense arrays of uniform submicron pores in silicon and their applications,” Adv. Funct. Mater. 23 (2013) 452.
[40] L. Hong, X. Wang, H. Zheng, L. He, H. Wang, H. Yu and Rusli, “High efficiency silicon nanohole/organic heterojunction hybrid solar cell,” Appl. Phys. Lett. 104 (2014) 053104.
[41] J. Ji, X. Pei, “Large-area ordered P-type Si nanohole arrays as photocathode for highly efficient hydrogen production by photoelectrochemical water splitting,” J. Mater. Sci. 27 (2016) 5468.
[42] S. Jeong, M. D. McGehee and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4 (2013) 2950.
[43] X. X. Wang, Z. H. Yang, P. Q. Gao, X. Yang, S. Zhou, D. Wang, M. D. Liao, P. P. Liu, Z. L. Liu, S. D. Wu, J. C. Ye and T. B. Yu, “Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays,” Opt. Express 25 (2017) 10464–10472.
[44] Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377 (2016) 104-109.
[45] Y. P. Xu, Y. M. Xuan and X. L. Liu, “Design of nano/micro–structured surfaces for efficiently harvesting and managing full–spectrum solar energy,” Sol. Energy Mater. Sol. Cells 158 (2017) 504-510.
[46] H. Jeong, H. Song, Y. Pak, I. K. Kwon, K. Jo, H. Lee and G. Y. Jung, “Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells,” Adv. Mater. 26 (2014) 3445–3450.
[47] H. W. Shin, S. J. Lee, D. G. Kim, M. H. Bae, J. Heo, K. J. Choi, W. J. Choi, J. W. Choe and J. C. Shin, “Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays,” Sci. Rep. 5 (2015) 10764.
[48] J. Michel, J. Liu and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4 (2010) 527-534.
[49] P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L, Roux, S. Edmond, E. Cassan, J. R. Coudevylle and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30GHz bandwidth,” Appl. Phys. Lett. 98 (2011) 332-334.
[50] Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, “Room-temperature shortwavelength infrared Si photodetector,” Sci. Rep. 7 (2017) 43688.
[51] X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-Trench silicon microstructures covered with gold films,” Plasmonics 11 (2016) 1019.
[52] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9 (2010) 205–213.
[53] K. T. Lin, H. L. Chen, Y. S. Lai and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5 (2014) 4288.
[54] B. Kim, S. Tamboli, J. Han, T. Kim and H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion,” Int. J. Heat Mass Transfer 82 (2015) 267–272.
[55] K. T. Lin, C. J. Chan, Y. S. Lai, L. T. Shiu, C. C. Lin and H. L. Chen, “Silicon-bsed embedded trenches of active antennas for high- responsivity omnidirectional photodetection at telecommunication wavelengths,” ACS Appl. Mater. Interfaces 11 (2019) 3150-3159.
[56] H. G. Yang, X. Y. Liu, J. S. Gao, X. Y. Wang, H. Liu and Z. Zhang, “An extending broadband near-infrared absorption of Si-based deep-trench microstructures,” Opt. Commun. 392 (2017) 59-63.
[57] L. Wen, Y. Chen, L. Liang and Q. Chen, “Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites,” ACS Photonics 5 (2018) 581–591.
[58] N. Verplanck, Y. Coffinier, V. Thomy and R. Boukherroub, “Wettability switching techniques superhydrophobic surfaces,” Nanoscale Res. Lett. 2 (2007) 577-596.
[59] M. Callies and D. Quere, “On water repellency,” Soft Mat. 1 (2005) 55-61.
[60] K. X. Ma, T. S. Chung and R. J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” J. Polym. Sci. 36 (1998) 2327.
[61] H. B. Michaelson, “Electron Emission in Intense Electric Fields,” J. Appl. Phys. 48 (1977) 4729.
[62] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati and T. Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Appl. Mater. Interfaces 9 (2017) 38931.
[63] C. H. Kuo, J. M. Wu and S. J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics,” Nanoscale Res. Lett. 8 (2013) 69.
[64] Y. Shen, N. S. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She and S. Z. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Adv electron mater 3 (2017) 1700295.
[65] H. C. Wu, H. Y. Tsai, H. T. Chiu and C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” ACS Appl. Mater. Interfaces 2 (2010) 3285.
[66] L. Nilsson, O. Groaning, C. Emmenegger, O. Kuetell, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000) 2071.
[67] U. Ray, D. Banerjee, B. Das, N.S. Das, S.K. Sinha and K.K. Chattopadhyay, “Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires,” Mater. Res. Bull. 97 (2018) 232-237.
[68] S. Lv, Z. Li, C. Chen, J. Liao, G. Wang, M. Li and W. Miao, “Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies,” ACS Appl. Mater. Interfaces 7 (2015) 13564–13568.
[69] Z. J. Qian, X. Y. Liu, Y. Yang and Q. X. Yin, “Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization,” J. Nanosci. Nanotechnol. 14 (2014) 6209-6212.
[70] S. L. Cheng, H. C. Lin, Y. H. Huang and S. C. Yang, “Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics,” RSC Adv. 7 (2017) 23935–23941.
[71] S. Maity, N. S. Das and K. K. Chattopadhyay, “Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission,” Phys. Status Solidi B 250 (2013) 1919-1925.
[72] W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou and H. L. Zhang, “Enhanced field emission from hydrogenated TiO2 nanotube arrays,” Nanotechnology 23 (2012) 455204.
[73] Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V. N. Singh, R. K. Gupta and B. K. Gupta, “High-performance stable field emission with ultralow turn on voltage from rGO conformal coated TiO2 nanotubes 3D arrays,” Sci. Rep. 5 (2015) 11612.
[74] S. C. Hung and Y. J. Chen, “Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays,” Mater. Res. Bull. 79 (2016) 115–120.
[75] W. D. Zhu, C. W. Wang, J. B. Chen, Y. Li and J. Wang, “Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process,” Appl. Surf. Sci. 301 (2014) 525–529.
[76] X. P. Shen, A. H. Yuan, Y. M. Hu, Y. Jiang, Z. Xu and Z. Hu, “Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays,” Nanotechnology 16 (2005) 2039–2043.
[77] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, “Stable field emission from hydrothermally grown ZnO nanotubes,” Appl. Phys. Lett. 88 (2006) 213102.
[78] J. Yuan, H. Li, Q. Wang, X. Zhang, S. Cheng, H. Yu, X. Zhu and Y. Xie, “Facile fabrication of aligned SnO2 nanotube arrays and their field-emission property,” Mater. Lett. 118 (2014) 43–46.
[79] M. S. Wu, J. T. Lee, Y. Y. Wang and C. C. Wan, “Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition,” 108 (2004) J. Phys. Chem. B 108 (2004) 16331-16333.
[80] S. G. Jang, H. K. Yu, D. G. Choi and S. M. Yang, “Controlled fabrication of hollow metal pillar arrays using colloidal masks,” Chem. Mater. 18 (2006) 6103-6105.
[81] C. Mu, Y. X. Yu, W. Liao, X. S. Zhao, N. S. Xu, X. H. Chen and D. P. Yu, “Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition,” Appl. Phys. Lett. 87 (2005) 113104.
[82] R. H. Yao, J. C. She, S. Z. Deng, J. Chen and N. S. Xu, “Field emission from vertically aligned silicon nanotubes,” IEEE IVNC Conf. (2007).
[83] P. D. Joshi, C. M. Tank, S. A. Kamble, D. S. Joag, S. V. Bhoraskar and V. L. Mathe, “Arc plasma synthesized Si nanotubes: A promising low turn on field emission source,” J. Vac. Sci. Technol. B 33 (2015) 021806.
[84] H. F. Hsu, J. Y. Wang and Y. H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” J. Electrochem. Soc. 161 (2014) H53–H56.
[85] H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48 (1977) 4729.
[86] M A Gosalvez, B Tang, P Pal, K Sato, Y Kimura K and Ishibashi, “Orientation- and concentration-dependent surfactant adsorption on silicon in aqueous alkaline solutions: explaining the changes in the etch rate, roughness and undercutting for MEMS applications,” J. Micromech. Microeng. 19 (2009) 125011.
|