博碩士論文 106324008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.217.207.112
姓名 曾郁珉(Yu-Min Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新穎濕式蝕刻法製備規則準直排列之矽單晶奈米管陣列結構及其特性研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們報導一種透過聚苯乙烯奈米球微影術結合金屬輔助催化蝕刻法的新穎製程,成功地在(001)矽單晶基材製備出大面積規則準直排列之矽晶奈米管陣列結構,並藉由調控聚苯乙烯奈米球之尺寸與濕式蝕刻時間可以分別控制矽單晶奈米管的內外徑以及長度。由SEM、TEM影像圖及相對應之電子選區繞射圖譜鑑定分析可得知所製備出之矽晶奈米管具有高度準直性且為單晶結構。在波長範圍400-1600 nm的光譜量測結果顯示,因矽晶奈米管可視為是由奈米柱與奈米洞共同組成之複合式奈米材料,相較於矽晶基材與矽晶奈米柱擁有更優異的光吸收能力,且透過金薄膜產生的表面電漿共振效應可大幅提升近紅外光波段的光吸收。此外,若奈米管之間排列較緊密,因靜電屏蔽效應而嚴重影響場發射性質,因此本實驗嘗試以相同製備手法製備出間距較大、不同尺寸之矽單晶奈米管陣列結構。由場發射性質量測結果顯示,小尺寸下的矽單晶奈米管具有管壁較薄,且相對各個奈米管的間距變大,可以發現其場增強因子從1830提升至2814,起始電場從4.3 V μm-1下降至2 V μm-1,大幅提升場發射的效應。
摘要(英) In this study, we demonstrate a novel approach combining the polystyrene nanosphere lithography and metal-assisted catalyzed etching process to successfully fabricate large-area, well-order arrays of vertically-aligned silicon nanotubes on (001)Si substrates. The inner/outer diameter and length of silicon nanotubes are modulated by controlling the size of the polystyrene nanospheres and the wet etching time. From SEM, TEM and SAED analysis indicated that silicon nanotubes are highly collimated and single crystalline. The Vis-NIR spectroscopic measurements revealed that the silicon nanotubes considered as a hole-in-rod structure exhibited excellent light absorption characteristics compared to silicon nanorods, and the surface plasma resonance effect generated by the gold films can greatly enhance the absorption of NIR light. In addition, if the nanotubes are crowded, the field emission properties are seriously affected by the screening effect. Therefore, this study attempts to fabricate silicon nanotube arrays with larger pitch and different size by the same method. From field emission measurement results show that the field enhancement factor of small-sized silicon nanotubes, owing to their thin wall, large pitch, can be found to increase from 1830 to 2814, and turn-on field was reduced from 4.3 V μm-1 to 2 V μm-1.
關鍵字(中) ★ 奈米球微影術
★ 矽奈米管
★ 光伏元件
★ 場發射電子元件
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 一維矽晶奈米結構 2
1-2-1 矽晶奈米線之製備 2
1-2-2 矽晶奈米管之製備 3
1-3 一維矽晶奈米結構應用於光學性質之研究 5
1-3-1 矽晶奈米結構應用於可見光之吸收 5
1-3-2 矽晶奈米結構應用於近紅外光之吸收 6
1-4 水滴接觸角之相關理論 7
1-5 場發射電子元件 8
1-5-1 電子場發射相關理論 8
1-5-2 矽單晶奈米管應用於電子場發射之研究 9
1-6 研究動機及目標 10
第二章 實驗步驟及實驗設備 12
2-1 規則有序排列且準直之矽單晶奈米柱陣列結構 12
2-1-1 矽晶基材使用前處理 12
2-1-2 自組裝奈米球陣列模板製備 12
2-1-3 蒸鍍純金薄膜 13
2-1-4 金屬催化化學蝕刻製備矽單晶奈米柱陣列 13
2-2 規則有序排列且準直之矽單晶奈米管陣列結構 13
2-2-1 選擇性異向蝕刻純金薄膜 14
2-3 試片分析 14
2-3-1 掃描式電子顯微鏡 14
2-3-2 穿透式電子顯微鏡 14
2-3-3 原子力顯微鏡 15
2-3-4 影像式水滴接觸角量測儀 15
2-3-5 可見光-近紅外光光譜儀 16
2-3-6 真空電子場發射性質量測系統 16
第三章 結果與討論 17
3-1 單層自組裝奈米球模板陣列製備 17
3-2 金屬輔助催化蝕刻法製備矽單晶奈米柱陣列 17
3-3 奈米球微影術結合選擇性蝕刻製備圓盤狀金奈米點陣列 18
3-4 金屬輔助催化蝕刻法製備矽單晶奈米管陣列 20
3-5 水滴接觸角量測分析 21
3-5-1 矽單晶奈米柱陣列 21
3-5-2 矽單晶奈米管陣列 22
3-6 可見光-近紅外光光譜量測分析 22
3-6-1 矽單晶奈米柱陣列 23
3-6-2 矽單晶奈米管陣列 24
3-7 電子場發射性質量測及探討 26
第四章 結論及未來展望 31
參考文獻 33
表目錄 37
圖目錄 45
參考文獻 [1] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15 (2007) 4198-4204.
[2] S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim and Y. R. Shin, “Fabrication and photovoltaic property of ordered macroporous silicon,” Appl. Phys. Lett. 95 (2009) 143-119.
[3] D. M. Newman, M. L. Wears, M. Jollie and D. Chooand, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology 18 (2007) 205-301.
[4] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati and T. Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Appl. Mater. Interfaces 44 (2017) 38931-38942.
[5] J. Y. Ji, H. Q. Zhang, Y. Qiu, L. N. Wang, Y. Wang and L. Z. Hu, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays,” Appl. Surf. Sci. 292 (2014) 86-92.
[6] P. Bhattacharya, S. Gohil, J. Mazher, S. Ghosh and P. Ayyub, “Universal, geometry-griven hydrophobic behaviour of bare metal nanowire clusters,” Nanotechnology 19 (2008) 075709.
[7] B. Gattu, R. Epur, P. H. Jampani, R. Kuruba, M. Kanchan Datta and P. N. Kumta, “Silicon−carbon core−shell hollow nanotubular configuration high- performance lithium-ion anodes,” J. Phys. Chem. 121 (2017) 9662–9671.
[8] J. Zhang, Y. Zhang, T. Song, X. Shen, X. Yu, S. T. Lee, B. Sun and B. Jia, “High-performance ultrathin organic−inorganic hybrid silicon solar cells via solution-processed interface modification,” ACS Appl. Mater. Interfaces 9 (2017) 21723–21729.
[9] J. Y. Li, C. H. Hung and C. Y. Chen, “Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement,” Sci. Rep. 7 (2017) 17177.
[10] H. J. Syu, S. C. Shiu and C. F. Lin, “Silicon nanowire/organic hybrid solar cell with efficiency of 8.40%,” Sol. Energy Mater. Sol. Cells 98 (2012) 267-272.
[11] Y. L. Li, P. P. Liang, X. Yang, H. Cai, Q. H. You, J. Sun, N. Xu and J. D.Wu, “Fabrication and short-wavelength light emission of Si nanowires grown via quasi solid–liquid–solid mechanism,” Mater. Lett. 134 (2014) 5-8.
[12] M. F. Hainey and J. M. Redwing, “Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications,” Appl. Phys. 3 (2016) 040806.
[13] H. L. Tsai, “Characteristics of silicon nanowire field electron emission,” Advanced Materials Research 652 (2013) 654-658.
[14] Y. L. Zhang, Z. Q. Fan, W. J. Zhang, Q. Ma, Z. Y. Jiang, and D. G. Ma, “High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles,” AIP Adv. 8 (2018) 055309.
[15] S. Merzsch, F. Steib, H. S. Wasisto, A. Stranz, P. Hinze, T. Weimann, E. Peiner and A. Waag, “Production of vertical nanowire resonators by cryogenic‑ICP–DRIE,” Microsyst Technol 20 (2013) 759–767.
[16] B. Dev Choudhury, R. Casquel, M. J. Bañuls, F. J. Sanza, M. F. Laguna, M. Holgado, R. Puchades, A. Maquieira, C. A. Barrios, and S. Anand, “Silicon nanopillar arrays with SiO2 overlayer for biosensing application,” Opt. Mater. Express. 4 (2014) 1345-1354.
[17] B. Ozdemir, M. Kulakci, R. Turan and H. E. Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,” Nanotechnology 22 (2011) 155606.
[18] H. D. Um, J. Y. Jung, H. S. Seo, K. T. Park, S. W. Jee, S. A. Moiz and J. H. Lee, “Silicon nanowire array solar cell prepared by metal induced electroless etching with a novel processing technology,” J. Appl. Phys. 49 (2010) 04DN02.
[19] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin and C. Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Curr. Appl. Phys. 13 (2013) 717-724.
[20] L. U. Vinzons, L. Shu, S. P. Yip, C. Y. Wong, L. L. H. Chan and J. C. Ho, “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Res. Lett. 12 (2017) 1–12.
[21] H. Cao, X. Li, B. Zhou, T. Chen, T. Shi, J. Zheng, G. Liu and Y. Wang, “On-demand fabrication of Si/SiO2 nanowire arrays by nanosphere lithography and subsequent thermal oxidation,” Nanoscale Res. Lett. 12 (2017) 105.
[22] P. Lianto, S. Yu, J. Wu, C.V. Thompson and W. K. Choi, “Vertical etching with isolated catalysts in metal-assisted chemical etching of silicon,” Nanoscale 4 (2012) 7532-7539.
[23] W.P.R. Liyanage and M. Nath, “CdS-CdTe heterojunction nanotube arrays for efficient solar energy conversion,” J. Mater. Chem. A 4 (2016) 14637-14648.
[24] M. Q. Xue, F. W. Li, D. Chen, Z. H. Yang, X. W. Wang and J. H. Ji, “High-oriented polypyrrole nanotubes for next-generation gas sensor,” Adv. Mater. 28 (2016) 8265–8270.
[25] S. J. Chen, W. L. Yang, J. J. Zhu, L. C. Fu, D. Y. Li and L. P. Zhou, “Preparation of highly-ordered lanthanum hexaboride nanotube arrays and optimizing its feld emission property by ion bombardment posttreatment,” J. Mater. Sci. Lett. 29 (2018) 10008–10015.
[26] Z. Zhang, L. Liu, T. Shimizu, S. Senz and U. Gösele, “Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template,” Nanotechnology 21 (2010) 055603.
[27] A. Convertino, M. Cuscunà and F. Martelli, “Silicon nanotubes from sacrificial silicon nanowires: fabrication and manipulation via embedding in flexible polymers,” Nanotechnology 23 (2012) 305602.
[28] R. Epur, P. J. Hanumantha, M. K. Datta, D. Hong, B. Gattu and P. N. Kumta, “A simple and scalable approach to hollow silicon nanotube (h-SiNT) anode architectures of superior electrochemical stability and reversible capacity,” J. Mater. Chem. A 3 (2015) 11117-11129.
[29] J. Rong, X. Fang, M. Ge, H. Chen, J. Xu and C. Zhou, “Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anode,” Nano Res. 6 (2013) 182–190.
[30] X. Huang, R. Gonzalez-Rodriguez, R. Rich, Z. Gryczynski and J. L. Coffer, “Fabrication and size dependent properties of porous silicon nanotube srrays,” Chem. Commun. 49 (2013) 5760.
[31] Z. Z. Lu, T. L. Wong, T. W. Ng and C. D. Wang, “Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries,” RSC Adv. 4 (2014) 2440.
[32] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Y. Duan, T. Yang, X. J. Zhang, C. J. Zheng and X. H. Zhang, “Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application,” Appl. Phys. Lett. 102 (2013) 163906.
[33] X. Xu, Q. Yang, N. Wattanatorn, C. Zhao, N. Chiang, S. J. Jonas and P. S. Weiss, “Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures,” ACS Nano 11 (2017) 10384–10391.
[34] H. Jeong, J. Lee, C. Bok, S. H. Lee and S. Yoo, “Fabrication of vertical silicon nanotube array using spacer patterning technique and metal-assisted chemical etching,” IEEE Trans. Nanotechnol. 16 (2017) 130–134.
[35] Y. Y. Kim, H. J. Kim, J. H. Jeong, J. Lee, J. H. Choi, J. Y. Jung, J. H. Lee, H. Cheng, K. W. Lee, and D. G. Choi, “Facile fabrication of silicon nanotube arrays and their application in Lithium ion batteries.” Adv. Eng. Mater., 18 (2016) 1349-1353.
[36] P. Doshi, G. E. Jellison and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt. 36 (1997) 7826.
[37] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection,” Nat. Photonics 1 (2007) 176–179.
[38] V. Trinh Pham, M. Dutta, H. Bui and N. Fukata, “Effect of nanowire length on the performance of silicon nanowires based solar cell,” Adv. Nat. Sci. 5 (2014) 045014.
[39] T. Kraus, D. Brodoceanu, N. Pazos-Perez and A. Fery, “Dense arrays of uniform submicron pores in silicon and their applications,” Adv. Funct. Mater. 23 (2013) 452.
[40] L. Hong, X. Wang, H. Zheng, L. He, H. Wang, H. Yu and Rusli, “High efficiency silicon nanohole/organic heterojunction hybrid solar cell,” Appl. Phys. Lett. 104 (2014) 053104.
[41] J. Ji, X. Pei, “Large-area ordered P-type Si nanohole arrays as photocathode for highly efficient hydrogen production by photoelectrochemical water splitting,” J. Mater. Sci. 27 (2016) 5468.
[42] S. Jeong, M. D. McGehee and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4 (2013) 2950.
[43] X. X. Wang, Z. H. Yang, P. Q. Gao, X. Yang, S. Zhou, D. Wang, M. D. Liao, P. P. Liu, Z. L. Liu, S. D. Wu, J. C. Ye and T. B. Yu, “Improved optical absorption in visible wavelength range for silicon solar cells via texturing with nanopyramid arrays,” Opt. Express 25 (2017) 10464–10472.
[44] Z. Xu, H. Huangfu, X. Li, H. Qiao, W. Guo, J. Guo and H. Wang, “Role of nanocone and nanohemisphere arrays in improving light trapping of thin film solar cells,” Opt. Commun. 377 (2016) 104-109.
[45] Y. P. Xu, Y. M. Xuan and X. L. Liu, “Design of nano/micro–structured surfaces for efficiently harvesting and managing full–spectrum solar energy,” Sol. Energy Mater. Sol. Cells 158 (2017) 504-510.
[46] H. Jeong, H. Song, Y. Pak, I. K. Kwon, K. Jo, H. Lee and G. Y. Jung, “Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells,” Adv. Mater. 26 (2014) 3445–3450.
[47] H. W. Shin, S. J. Lee, D. G. Kim, M. H. Bae, J. Heo, K. J. Choi, W. J. Choi, J. W. Choe and J. C. Shin, “Short-wavelength infrared photodetector on Si employing strain-induced growth of very tall InAs nanowire arrays,” Sci. Rep. 5 (2015) 10764.
[48] J. Michel, J. Liu and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4 (2010) 527-534.
[49] P. Chaisakul, D. Marris-Morini, G. Isella, D. Chrastina, X. L, Roux, S. Edmond, E. Cassan, J. R. Coudevylle and L. Vivien, “Ge/SiGe multiple quantum well photodiode with 30GHz bandwidth,” Appl. Phys. Lett. 98 (2011) 332-334.
[50] Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, “Room-temperature shortwavelength infrared Si photodetector,” Sci. Rep. 7 (2017) 43688.
[51] X. Y. Liu, J. S. Gao, H. G. Yang, H. Liu, X. Y. Wang and Z. F. Shen, “Near-infrared absorption enhancement mechanism investigations of deep-Trench silicon microstructures covered with gold films,” Plasmonics 11 (2016) 1019.
[52] H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9 (2010) 205–213.
[53] K. T. Lin, H. L. Chen, Y. S. Lai and C. C. Yu, “Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths,” Nat. Commun. 5 (2014) 4288.
[54] B. Kim, S. Tamboli, J. Han, T. Kim and H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion,” Int. J. Heat Mass Transfer 82 (2015) 267–272.
[55] K. T. Lin, C. J. Chan, Y. S. Lai, L. T. Shiu, C. C. Lin and H. L. Chen, “Silicon-bsed embedded trenches of active antennas for high- responsivity omnidirectional photodetection at telecommunication wavelengths,” ACS Appl. Mater. Interfaces 11 (2019) 3150-3159.
[56] H. G. Yang, X. Y. Liu, J. S. Gao, X. Y. Wang, H. Liu and Z. Zhang, “An extending broadband near-infrared absorption of Si-based deep-trench microstructures,” Opt. Commun. 392 (2017) 59-63.
[57] L. Wen, Y. Chen, L. Liang and Q. Chen, “Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites,” ACS Photonics 5 (2018) 581–591.
[58] N. Verplanck, Y. Coffinier, V. Thomy and R. Boukherroub, “Wettability switching techniques superhydrophobic surfaces,” Nanoscale Res. Lett. 2 (2007) 577-596.
[59] M. Callies and D. Quere, “On water repellency,” Soft Mat. 1 (2005) 55-61.
[60] K. X. Ma, T. S. Chung and R. J. Good, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” J. Polym. Sci. 36 (1998) 2327.
[61] H. B. Michaelson, “Electron Emission in Intense Electric Fields,” J. Appl. Phys. 48 (1977) 4729.
[62] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati and T. Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Appl. Mater. Interfaces 9 (2017) 38931.
[63] C. H. Kuo, J. M. Wu and S. J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics,” Nanoscale Res. Lett. 8 (2013) 69.
[64] Y. Shen, N. S. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She and S. Z. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Adv electron mater 3 (2017) 1700295.
[65] H. C. Wu, H. Y. Tsai, H. T. Chiu and C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” ACS Appl. Mater. Interfaces 2 (2010) 3285.
[66] L. Nilsson, O. Groaning, C. Emmenegger, O. Kuetell, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000) 2071.
[67] U. Ray, D. Banerjee, B. Das, N.S. Das, S.K. Sinha and K.K. Chattopadhyay, “Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires,” Mater. Res. Bull. 97 (2018) 232-237.
[68] S. Lv, Z. Li, C. Chen, J. Liao, G. Wang, M. Li and W. Miao, “Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies,” ACS Appl. Mater. Interfaces 7 (2015) 13564–13568.
[69] Z. J. Qian, X. Y. Liu, Y. Yang and Q. X. Yin, “Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization,” J. Nanosci. Nanotechnol. 14 (2014) 6209-6212.
[70] S. L. Cheng, H. C. Lin, Y. H. Huang and S. C. Yang, “Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics,” RSC Adv. 7 (2017) 23935–23941.
[71] S. Maity, N. S. Das and K. K. Chattopadhyay, “Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission,” Phys. Status Solidi B 250 (2013) 1919-1925.
[72] W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou and H. L. Zhang, “Enhanced field emission from hydrogenated TiO2 nanotube arrays,” Nanotechnology 23 (2012) 455204.
[73] Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V. N. Singh, R. K. Gupta and B. K. Gupta, “High-performance stable field emission with ultralow turn on voltage from rGO conformal coated TiO2 nanotubes 3D arrays,” Sci. Rep. 5 (2015) 11612.
[74] S. C. Hung and Y. J. Chen, “Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays,” Mater. Res. Bull. 79 (2016) 115–120.
[75] W. D. Zhu, C. W. Wang, J. B. Chen, Y. Li and J. Wang, “Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process,” Appl. Surf. Sci. 301 (2014) 525–529.
[76] X. P. Shen, A. H. Yuan, Y. M. Hu, Y. Jiang, Z. Xu and Z. Hu, “Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays,” Nanotechnology 16 (2005) 2039–2043.
[77] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, “Stable field emission from hydrothermally grown ZnO nanotubes,” Appl. Phys. Lett. 88 (2006) 213102.
[78] J. Yuan, H. Li, Q. Wang, X. Zhang, S. Cheng, H. Yu, X. Zhu and Y. Xie, “Facile fabrication of aligned SnO2 nanotube arrays and their field-emission property,” Mater. Lett. 118 (2014) 43–46.
[79] M. S. Wu, J. T. Lee, Y. Y. Wang and C. C. Wan, “Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition,” 108 (2004) J. Phys. Chem. B 108 (2004) 16331-16333.
[80] S. G. Jang, H. K. Yu, D. G. Choi and S. M. Yang, “Controlled fabrication of hollow metal pillar arrays using colloidal masks,” Chem. Mater. 18 (2006) 6103-6105.
[81] C. Mu, Y. X. Yu, W. Liao, X. S. Zhao, N. S. Xu, X. H. Chen and D. P. Yu, “Controlling growth and field emission properties of silicon nanotube arrays by multistep template replication and chemical vapor deposition,” Appl. Phys. Lett. 87 (2005) 113104.
[82] R. H. Yao, J. C. She, S. Z. Deng, J. Chen and N. S. Xu, “Field emission from vertically aligned silicon nanotubes,” IEEE IVNC Conf. (2007).
[83] P. D. Joshi, C. M. Tank, S. A. Kamble, D. S. Joag, S. V. Bhoraskar and V. L. Mathe, “Arc plasma synthesized Si nanotubes: A promising low turn on field emission source,” J. Vac. Sci. Technol. B 33 (2015) 021806.
[84] H. F. Hsu, J. Y. Wang and Y. H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” J. Electrochem. Soc. 161 (2014) H53–H56.
[85] H. B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48 (1977) 4729.
[86] M A Gosalvez, B Tang, P Pal, K Sato, Y Kimura K and Ishibashi, “Orientation- and concentration-dependent surfactant adsorption on silicon in aqueous alkaline solutions: explaining the changes in the etch rate, roughness and undercutting for MEMS applications,” J. Micromech. Microeng. 19 (2009) 125011.
指導教授 鄭紹良 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明