博碩士論文 106324028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.128.198.90
姓名 陳司盛(Si-Sheng Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用兩性離子表面塗層探討抗石蓴孢子及藤壺腺介幼蟲附著之研究
(Surface coating with zwitterionic materials for anti Ulva zoospores and barnacle cypris larvae settlement studies)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去幾十年研究中,彈性模數、表面自由能及兩性離子材料對海洋抗污塗層的發展有重大的影響。本研究期待結合低彈性模數材料聚二甲基矽氧烷(polydimethylsiloxane, PDMS)和兩性離子材料磺基甜菜鹼矽烷(sulfobetaine silane, SBSi)作為一種新的抗海洋生物汙損(anti-marine biofouling)塗層,並以藤壺(Amphibalanus amphitrite)的腺介幼蟲(cyrpids)和石蓴(Ulva lactuca, Ulva fasciata)的游動孢子(zoospores)作為抗海洋生物污損之研究物種。本研究主要進行腺介幼蟲錄影追蹤觀測、腺介幼蟲附著檢測及石蓴孢子附著檢測,其中使用玻璃、Fluorosilane、PDMS、SBSi四種表面。於腺介幼蟲錄影追蹤觀測中,影像顯示它沒有附著的傾向抑或是無法附著在PDMS-SBSi表面上,同時,PDMS-SBSi表面在兩天的腺介幼蟲附著檢測中只有2%的腺介幼蟲附著率;在石蓴孢子附著檢測中,PDMS-SBSi表面上有最小的游動孢子附著數量以及水流沖擊後的92%孢子去除率。由此可見,PDMS和SBSi的組合確實具有對藤壺幼蟲和石蓴孢子的抗污染性,而且,在對抗石蓴孢子時,這個組合更展現了優異的污損釋放特性。基於這些測定,我們將可以進一步探討PDMS-SBSi對藤壺幼蟲的污損釋放,或是深入研究表面的化學性質,使用表面電漿共振儀(SPR)來檢測附著誘導蛋白複合物(SIPC)是否吸附在PDMS-SBSi上。
摘要(英) In the past few decades, elastic modulus, surface free energy and zwitterionic materials have been a key element of the development of marine antifouling coatings. This study combines a low elastic modulus material (polydimethylsiloxane, PDMS) and a zwitterionic material (sulfobetaine silane, SBSi) as a new anti-marine biofouling. Barnacle cypris larva (Amphibalanus amphitrite) and Ulva zoospores (Ulva lactuca, Ulva fasciata) are used as research species against marine biofouling. This study mainly carried out video tracking observation of cyprids (barnacle cypris larva), cyprids settlement assay and Ulva zoospores settlement assay, which used glass, fluorosilane, PDMS and SBSi. In the video tracking, the film showed that it had no tendency to adhere or could not adhere to the surface of PDMS-SBSI. At the same time, only 2% of the cyprids settled on the surface of the PDMS-SBSI for two days. In the settlement assay of Ulva zoospores, the attached number of zoospores is lower on the surface of PDMS-SBSI and the 92% of the attached zoospores removed after water flow impact. The study result indicate that the combination of PDMS and SBSI does have anti-contamination against barnacle cypris larva and Ulva zoospores, also, this combination exhibits superior fouling release characteristics when against Ulva zoospores. Based on these measurements, we will further investigate the stain release of PDMS-SBSI on barnacle cypris larva, or in-depth study of surface chemistry, using surface plasma resonator (SPR) to detect adhesion-induced protein complex (SIPC) adsorption on PDMS-SBSI.
關鍵字(中) ★ 藤壺
★ 石蓴
★ 海洋
★ 防污
★ 兩性離子
關鍵字(英) ★ barnacle
★ ulva
★ marine
★ antifouling
★ zwitterion
論文目次 摘要 i
Abstract ii
誌謝 iii
圖目錄 viii
表目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2.1海洋生物污損 3
2.1.1藤壺 5
2.1.2石蓴 12
2.2防污塗料 14
2.2.1污損阻抗塗層 15
2.2.2污損釋放塗層 16
2.2.3仿生防污塗層 16
2.2.4生物降解高分子塗層 17
2.3錄影追蹤 19
2.4附著檢測 22
第三章 實驗藥品、儀器設備與方法 23
3.1實驗藥品 23
3.2儀器設備 24
3.3實驗方法 25
3.3.1聚二甲基矽氧烷PDMS固化 25
3.3.2兩性離子材料SBSi合成 25
3.3.3兩性離子材料SBSi接枝 26
3.3.4腺介幼蟲錄影追蹤觀測Cyprids video tracking 27
3.3.5腺介幼蟲附著檢測Cyprids settlement assay 28
3.3.6石蓴孢子附著檢測Ulva zoospores settlement assay
30
第四章 實驗結果與討論 34
4.1表面材料防污測試 34
4.1.1藤壺幼蟲行為觀測 34
4.1.2石蓴孢子附著檢測 39
第五章 結論 47
5.1結論 47
5.2未來展望 48
第六章 參考文獻 49
參考文獻 [1] J. A. Callow and M. E. Callow, "Trends in the development of environmentally friendly fouling-resistant marine coatings," Nature Communications, vol. 2, p. 244, 2011.
[2] A. Jain and N. B. Bhosle, "Biochemical composition of the marine conditioning film: implications for bacterial adhesion," Biofouling, vol. 25, no. 1, pp. 13-19, 2009.
[3] L. D. Chambers, K. R. Stokes, F. C. Walsh, and R. J. Wood, "Modern approaches to marine antifouling coatings," Surface and Coatings Technology, vol. 201, no. 6, pp. 3642-3652, 2006.
[4] D. M. Yebra, S. Kiil, and K. Dam-Johansen, "Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings," Progress in Organic Coatings, vol. 50, no. 2, pp. 75-104, 2004.
[5] C. M. Magin, S. P. Cooper, and A. B. Brennan, "Non-toxic antifouling strategies," Materials Today, vol. 13, no. 4, pp. 36-44, 2010.
[6] A. Rosenhahn, S. Schilp, H. J. Kreuzer, and M. Grunze, "The role of “inert” surface chemistry in marine biofouling prevention," Physical Chemistry Chemical Physics, vol. 12, no. 17, pp. 4275-4286, 2010.
[7] S. Cao, J. Wang, H. Chen, and D. Chen, "Progress of marine biofouling and antifouling technologies," Chinese Science Bulletin, vol. 56, no. 7, pp. 598-612, 2011.
[8] M. J. Naldrett, "The importance of sulphur cross-links and hydrophobic interactions in the polymerization of barnacle cement," Journal of the Marine Biological Association of the United Kingdom, vol. 73, no. 3, pp. 689-702, 1993.
[9] M. E. Callow, J. A. Callow, J. D. Pickett‐Heaps, and R. Wetherbee, "Primary adhesion of enteromorpha (Chlorophyta, Ulvales) propagules: quantitative settlement studies and video microscopy," Journal of Phycology, vol. 33, no. 6, pp. 938-947, 1997.
[10] D. Roberts, D. Rittschof, E. Holm, and A. Schmidt, "Factors influencing initial larval settlement: temporal, spatial and surface molecular components," Journal of Experimental Marine Biology and Ecology, vol. 150, no. 2, pp. 203-221, 1991.
[11] A. Clare, D. Rittschof, D. Gerhart, and J. Maki, "Molecular approaches to nontoxic antifouling," Invertebrate Reproduction & Development, vol. 22, no. 1-3, pp. 67-76, 1992.
[12] D. Rittschof, "Research on practical environmentally benign antifouling coatings," Biofouling, pp. 396-409, 2010.
[13] D. Crisp, Settlement responses in marine organisms. Butterworths, London, 1976.
[14] B. T. Hentschel and R. B. Emlet, "Metamorphosis of barnacle nauplii: effects of food variability and a comparison with amphibian models," Ecology, vol. 81, no. 12, pp. 3495-3508, 2000.
[15] I. Y. Phang, N. Aldred, A. S. Clare, and G. J. Vancso, "Towards a nanomechanical basis for temporary adhesion in barnacle cyprids (Semibalanus balanoides)," Journal of the Royal Society Interface, vol. 5, no. 21, pp. 397-402, 2007.
[16] D. Crisp, G. Walker, G. Young, and A. Yule, "Adhesion and substrate choice in mussels and barnacles," Journal of Colloid and Interface Science, vol. 104, no. 1, pp. 40-50, 1985.
[17] J. A. Nott and B. Foster, "On the structure of the antennular attachment organ of the cypris larva of Balanus balanoides (L.)," Philosophical Transactions of the Royal Society of London. B, Biological Sciences, vol. 256, no. 803, pp. 115-134, 1969.
[18] J. Nott, "Settlement of barnacle larvae: surface structure of the antennular attachment disc by scanning electron microscopy," Marine Biology, vol. 2, no. 3, pp. 248-251, 1969.
[19] K. Matsumura, M. Nagano, and N. Fusetani, "Purification of a larval settlement‐inducing protein complex (SIPC) of the barnacle, Balanus amphitrite," Journal of Experimental Zoology, vol. 281, no. 1, pp. 12-20, 1998.
[20] G. S. Prendergast, C. M. Zurn, A. V. Bers, R. M. Head, L. J. Hansson, and J. C. Thomason, "Field-based video observations of wild barnacle cyprid behaviour in response to textural and chemical settlement cues," Biofouling, vol. 24, no. 6, pp. 449-459, 2008.
[21] A. Yule and G. Walker, "Settlement of Balanus balanoides: the effect of cyprid antennular secretion," Journal of the Marine Biological Association of the United Kingdom, vol. 65, no. 3, pp. 707-712, 1985.
[22] A. S. Clare, R. K. Freet, and M. McClary, "On the antennular secretion of the cyprid of Balanus amphitrite amphitrite, and its role as a settlement pheromone," Journal of the Marine Biological Association of the United Kingdom, vol. 74, no. 1, pp. 243-250, 1994.
[23] K. Matsumura, J. M. Hills, P. O. Thomason, J. C. Thomason, and A. S. Clare, "Discrimination at settlement in barnacles: laboratory and field experiments on settlement behaviour in response to settlement‐inducing protein complexes," Biofouling, vol. 16, no. 2-4, pp. 181-190, 2000.
[24] N. Aldred, A. Alsaab, and A. S. Clare, "Quantitative analysis of the complete larval settlement process confirms Crisp′s model of surface selectivity by barnacles," Proceedings of the Royal Society B: Biological Sciences, vol. 285, no. 1872, p. 20171957, 2018.
[25] J. T. Høeg, D. Maruzzo, K. Okano, H. Glenner, and B. K. K. Chan, "Metamorphosis in balanomorphan, pedunculated, and parasitic barnacles: a video-based analysis," Society for Integrative and Comparative Biology, 2012.
[26] G. Gwilliam and R. Millecchia, "Barnacle photoreceptors: Their physiology and role in the control of behavior," Progress in Neurobiology, vol. 4, pp. 211-239, 1975.
[27] R. Barnes, "D. 1982," Invertebrate Zoology. Philadelphia, PA: Holt-Saunders International, pp. 1046-1050.
[28] T. C. Lacalli, "Serial EM analysis of a copepod larval nervous system: Naupliar eye, optic circuitry, and prospects for full CNS reconstruction," Arthropod Structure & Development, vol. 38, no. 5, pp. 361-375, 2009.
[29] A. M. Brzozowska et al., "Biomimicking micropatterned surfaces and their effect on marine biofouling," Langmuir, vol. 30, no. 30, pp. 9165-9175, 2014.
[30] A. M. Brzozowska et al., "Effect of variations in micropatterns and surface modulus on marine fouling of engineering polymers," ACS Applied Materials & Interfaces, vol. 9, no. 20, pp. 17508-17516, 2017.
[31] T. Murosaki et al., "Antifouling properties of tough gels against barnacles in a long-term marine environment experiment," Biofouling, vol. 25, no. 7, pp. 657-666, 2009.
[32] J. Jiang, Y. Fu, Q. Zhang, X. Zhan, and F. Chen, "Novel amphiphilic poly (dimethylsiloxane) based polyurethane networks tethered with carboxybetaine and their combined antibacterial and anti-adhesive property," Applied Surface Science, vol. 412, pp. 1-9, 2017.
[33] Q. Xie, Q. Xie, J. Pan, C. Ma, and G. Zhang, "Biodegradable polymer with hydrolysis-Induced zwitterions for antibiofouling," ACS Applied Materials & Interfaces, vol. 10, no. 13, pp. 11213-11220, 2018.
[34] M. R. Hibbs, B. A. Hernandez-Sanchez, J. Daniels, and S. J. Stafslien, "Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling," Biofouling, vol. 31, no. 7, pp. 613-624, 2015.
[35] F. Khalil et al., "Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel," Colloids and Surfaces B: Biointerfaces, vol. 117, pp. 185-192, 2014.
[36] Y.-Y. Luk, M. Kato, and M. Mrksich, "Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment," Langmuir, vol. 16, no. 24, pp. 9604-9608, 2000.
[37] E. Ostuni, R. G. Chapman, R. E. Holmlin, S. Takayama, and G. M. Whitesides, "A survey of structure− property relationships of surfaces that resist the adsorption of protein," Langmuir, vol. 17, no. 18, pp. 5605-5620, 2001.
[38] M. Shen, L. Martinson, M. S. Wagner, D. G. Castner, B. D. Ratner, and T. A. Horbett, "PEO-like plasma polymerized tetraglyme surface interactions with leukocytes and proteins: in vitro and in vivo studies," Journal of Biomaterials Science, Polymer Edition, vol. 13, no. 4, pp. 367-390, 2002.
[39] Y. Chang, S.-C. Liao, A. Higuchi, R.-C. Ruaan, C.-W. Chu, and W.-Y. Chen, "A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion," Langmuir, vol. 24, no. 10, pp. 5453-5458, 2008.
[40] M.-C. Sin, S.-H. Chen, and Y. Chang, "Hemocompatibility of zwitterionic interfaces and membranes," Polymer Journal, vol. 46, no. 8, p. 436, 2014.
[41] V. Singh, C.-J. Huang, Y.-J. Sheng, and H.-K. Tsao, "Smart zwitterionic sulfobetaine silane surfaces with switchable wettability for aqueous/nonaqueous drops," Journal of Materials Chemistry A, vol. 6, no. 5, pp. 2279-2288, 2018.
[42] N. Aldred, G. Li, Y. Gao, A. S. Clare, and S. Jiang, "Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings," Biofouling, vol. 26, no. 6, pp. 673-683, 2010.
[43] M. K. Chaudhury, J. A. Finlay, J. Y. Chung, M. E. Callow, and J. A. Callow, "The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly (dimethylsiloxane)(PDMS) model networks," Biofouling, vol. 21, no. 1, pp. 41-48, 2005.
[44] A. L. Patterson et al., "Role of backbone chemistry and monomer sequence in amphiphilic oligopeptide-and oligopeptoid-functionalized PDMS-and PEO-based block copolymers for marine antifouling and fouling release coatings," Macromolecules, vol. 50, no. 7, pp. 2656-2667, 2017.
[45] M. E. Barry et al., "The role of hydrogen bonding in peptoid-based marine antifouling coatings," Macromolecules, 2019.
[46] M. L. Carman et al., "Engineered antifouling microtopographies–correlating wettability with cell attachment," Biofouling, vol. 22, no. 1, pp. 11-21, 2006.
[47] C. M. Magin, C. J. Long, S. P. Cooper, L. K. Ista, G. P. López, and A. B. Brennan, "Engineered antifouling microtopographies: the role of Reynolds number in a model that predicts attachment of zoospores of Ulva and cells of Cobetia marina," Biofouling, vol. 26, no. 6, pp. 719-727, 2010.
[48] R. T. Martin, L. P. Camargo, and S. A. Miller, "Marine-degradable polylactic acid," Green Chemistry, vol. 16, no. 4, pp. 1768-1773, 2014.
[49] D. Huang et al., "Seawater degradable PVA/PCL blends with water-soluble polyvinyl alcohol as degradation accelerator," Polymer Degradation and Stability, vol. 163, pp. 195-205, 2019.
[50] Q. Xie, X. Zhou, C. Ma, and G. Zhang, "Self-cross-linking degradable polymers for antifouling coatings," Industrial & Engineering Chemistry Research, vol. 56, no. 18, pp. 5318-5324, 2017.
[51] A. Guzman-Sielicka, H. Janik, and P. Sielicki, "Proposal of new starch-blends composition quickly degradable in marine environment," Journal of Polymers and the Environment, vol. 21, no. 3, pp. 802-806, 2013.
[52] S. Chen, C. Ma, and G. Zhang, "Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling," Progress in Organic Coatings, vol. 104, pp. 58-63, 2017.
[53] C. Ma, L. Xu, W. Xu, and G. Zhang, "Degradable polyurethane for marine anti-biofouling," Journal of Materials Chemistry B, vol. 1, no. 24, pp. 3099-3106, 2013.
[54] W. Xu, C. Ma, J. Ma, T. Gan, and G. Zhang, "Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation," ACS Applied Materials & Interfaces, vol. 6, no. 6, pp. 4017-4024, 2014.
[55] S. Chen, C. Ma, and G. Zhang, "Biodegradable polymers for marine antibiofouling: Poly (ε-caprolactone)/poly (butylene succinate) blend as controlled release system of organic antifoulant," Polymer, vol. 90, pp. 215-221, 2016.
[56] K. C. Chaw and W. R. Birch, "Quantifying the exploratory behaviour of Amphibalanus amphitrite cyprids," Biofouling, vol. 25, no. 7, pp. 611-619, 2009.
[57] J.-P. Marechal, C. Hellio, M. Sebire, and A. Clare, "Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0," Biofouling, vol. 20, no. 4-5, pp. 211-217, 2004.
[58] M. O. Amsler, C. D. Amsler, D. Rittschof, M. A. Becerro, and J. B. Mcclintock, "The use of computer-assisted motion analysis for quantitative studies of the behaviour of barnacle (Balanus amphitrite) larvae," Marine and Freshwater Behaviour and Physiology, vol. 39, no. 4, pp. 259-268, 2006.
[59] Z. Zhang et al., "Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings," Langmuir, vol. 25, no. 23, pp. 13516-13521, 2009.
[60] Y. Zhang, H. Hu, X. Pei, Y. Liu, Q. Ye, and F. Zhou, "Polymer brushes on structural surfaces: a novel synergistic strategy for perfectly resisting algae settlement," Biomaterials Science, vol. 5, no. 12, pp. 2493-2500, 2017.
[61] M. E. Callow et al., "Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha," Biofouling, vol. 18, no. 3, pp. 229-236, 2002.
[62] A. Beigbeder et al., "Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings," Biofouling, vol. 24, no. 4, pp. 291-302, 2008.
[63] H. S. Sundaram et al., "Fluorine-free mixed amphiphilic polymers based on PDMS and PEG side chains for fouling release applications," Biofouling, vol. 27, no. 6, pp. 589-602, 2011.
[64] M. P. Schultz, J. A. Finlay, M. E. Callow, and J. A. Callow, "A turbulent channel flow apparatus for the determination of the adhesion strength of microfouling organisms," Biofouling, vol. 15, no. 4, pp. 243-251, 2000.
指導教授 陳文逸(Wen-Yih Chen) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明