博碩士論文 106326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:65 、訪客IP:3.144.227.3
姓名 王韋智(Wei-Chih Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2019年春季高山與都市氣膠水溶性無機離子與光學特性短時間變化
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大氣中氣膠水溶性無機離子對太陽輻射的散射,對氣候變遷和大氣能見度有很大的影響,本文於2019年3月10日至4月10日在鹿林山大氣背景觀測站(2,862 m a.s.l.),利用半自動監測儀器觀測高時間解析度的PM2.5水溶性無機離子,並結合觀測站相關監測資料進行數據分析;此外,為了觀察都市環境短時間水溶性無機離子變化,於2019年4月17日至4月30日選擇鄰近台中交流道及工業區的環保署西屯測站進行觀測分析。
  春季是中南半島生質燃燒(Biomass Burning, BB)旺季,燃燒煙團藉由盛行西風經常傳輸至東亞,2019年鹿林山春季受傳輸BB煙團影響時,PM2.5質量濃度高達26.9 ± 9.0 μg m-3,SO42-、NO3-、NH4+濃度分別提升至5.0 ± 1.7、1.2 ± 0.9、0.8 ± 0.8 μg m-3,BB氣膠指標成分之一的K+濃度增加為0.3 ± 0.2 μg m-3,氣膠數目濃度分布集中在90-300 nm粒徑區間。在三月下旬一個BB事件,當有太陽輻射且相對濕度低的環境下,發現20-50 nm粒徑區間有新微粒形成現象。
  在台中市西屯測站監測期間,PM2.5平均質量濃度為22.6 ± 7.8 μg m-3, SO42-、NO3-、NH4+濃度分別為4.8 ± 2.0、2.5 ± 2.8、4.7 ± 2.0 μg m-3。相較於高山背景環境,都市環境的監測常發現NO2-,這可能是夜晚較高相對濕度的環境下,HONO、NO2氣體在氣膠潮濕表面發生異質反應而產生NO2-。
本文透過氣膠光學分類法,連結氣膠化學成分與大氣光學特性,發現鹿林山生質燃燒氣膠屬於中度或微幅吸光型,西屯測站氣膠屬於非吸光型,前述類型的歸類在高PM2.5濃度才具有一致性,低PM2.5濃度時則較分歧。轉移到氣膠光學厚度(Aerosol Optical Depth, AOD),本文發現在低相對濕度、非靜風且現址無雲霧及降雨的環境條件下,鹿林山及西屯測站大氣氣膠化學特性和大氣AOD相關性良好,並且發現AOD有隨著NO3-在總水溶性無機離子占比提升而增加的跡象,這可能與NO3-較強的吸濕作用有關。針對氣膠酸度,本文進行ISORROPIAⅡ熱力平衡模式模擬,顯示鹿林山生質燃燒事件主要為酸性氣膠,而都市地區因有過剩NH4+而較不酸。
總結來說,本文發現在生質燃燒煙團長程傳輸的影響下,PM2.5和O3濃度在高山背景站甚至高於都市測站,都市測站的較高CO、NO3-、NO2-濃度則反映了交通污染排放的影響。
摘要(英) The water-soluble inorganic ions (WSIIs) of atmospheric aerosol influences climate change and atmospheric visibility significantly by scattering solar radiation. This study used a semi-continuous monitoring instrument to observe high time-resolved WSIIs of PM2.5 and analyzed the data in companion with the related monitoring data at the Lulin atmospheric background station (LABS, 2,862 m a.s.l.) from March 10 to April 10, 2019. Additionally, the Xitun Monitoring Station of the Environmental Protection Administration (Xitun Station) near the Taichung Interchange and the industrial park was selected for the observation of WSIIs in the urban environment from April 17 to April 30, 2019.
  Spring is the extensive biomass burning (BB) season in the Indochina Peninsula; the BB smoke was frequently transported to East Asia by the prevailing westerly. The PM2.5 mass concentration increased to 26.9 ± 9.0 μg m-3 under the influence of the transported BB smoke at LABS in the spring of 2019. The mean values of SO42-, NO3-, and NH4+ increased to 5.0 ± 1.7, 1.2 ± 0.9, and 0.8 ± 0.8 μg m-3, respectively. The concentration of K+, one of the BB tracers, increased to 0.3 ± 0.2 μg m-3. Meanwhile, aerosol number concentration was found to distribute in the 90-300 nm size range. Notably, a phenomenon of new particle formation appeared in the 20-50 nm size range under solar radiation and low relative humidity (RH) in a BB event of late March.
  During the monitoring period at Xitun Station in Taichung City, the mean value of PM2.5 mass concentration was 22.6 ± 7.8 μg m-3 along with SO42-, NO3-, and NH4+ concentrations at 4.8 ± 2.0, 2.5 ± 2.8, and 4.7 ± 2.0 μg m-3, respectively. In contrast to the high altitude environment, the monitoring at the urban station discovered the presence of NO2- frequently. The formation of NO2- might be originated from the heterogeneous reaction of HONO and NO2 gases on the wet surfaces of aerosols under high RH at night.
  In this study, an optical classification method was applied to connect aerosol chemical components with their atmospheric optical properties. The results showed that the aerosol was moderately or slightly absorbing at LABS and that at the Xitun Station was non-absorbing. However, the above classification was only applicable to high PM2.5 concentration and was divided under low PM2.5 concentration. Switching to Aerosol Optical Depth (AOD), this study found aerosol chemical components correlated with AOD well under low RH, non-calm wind, and without cloud and rain conditions at both LABS and Xitun station. Also, AOD values tended to increase with NO3- share in total WSIIs, indicating stronger hygroscopicity of NO3-. For the aerosol acidity, the simulation of ISORROPIA II, a thermodynamic equillibrium model, indicated the dominance of acidic aerosol in the BB smoke at LABS in contrast to less acidic in the urban environment because of the excess NH4+.
For a summary, this study found that PM2.5 and O3 concentrations at the high altitude station even exceeded that of the urban station under the influence of BB smoke from long-range transport. In contrast, higher CO, NO3-, and NO2- concentrations in the urban station reflected the effects of traffic pollution emissions.
關鍵字(中) ★ 氣膠水溶性無機離子短時間變化
★ 生質燃燒煙團
★ 新微粒形成
★ 氣膠光學厚度
★ NO2-形成條件
關鍵字(英)
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 XI
表目錄 XX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 氣膠水溶性無機離子 4
2.1.1 水溶性無機離子中和狀況及結合型態 4
2.1.2 水溶性無機離子不同粒徑的機制及來源 5
2.2 生質燃燒 7
2.2.1 生質燃燒氣膠化學特性 7
2.2.2 生質燃燒氣膠光學特性 9
2.2.3 生質燃燒氣膠粒徑分布 11
2.2.4 生質燃燒氣膠形狀及混合狀態 12
2.3 氣膠光學厚度 13
2.3.1  Ångström exponent 15
2.4 氣膠酸度 16
2.4.1 氣膠熱動力模式(ISORROPIA II & E-AIM) 16
2.4.2 氣膠pH值及含水量 17
2.5 高山地區氣膠特性 18
2.5.1 雲霧變化特性 20
2.6 都市氣膠特性 21
2.6.1 亞硝酸鹽(NO2-)形成機制及來源 23
2.6.2 都市NOR與SOR變化 26
2.7 氣膠水溶性無機離子連續監測儀器 27
2.7.1 平行板濕式固氣分離器 27
2.7.2 不同即時氣膠水溶性無機離子監測儀器結果比對 28
第三章 研究方法 30
3.1 研究架構 30
3.2 採樣地點與採樣週期 32
3.3 採樣儀器與方法 34
3.3.1 短時間氣膠水溶性無機離子監測 34
3.4 大氣氣膠連續監測系統 38
3.4.1 自動監測儀器 38
3.4.2 NOAA氣膠觀測系統 39
3.4.3 積分式散光儀(Integrating Nephelometer) 40
3.4.4 微粒碳吸收光度計(PSAP) 43
3.4.5 粒徑分布監測系統 47
3.4.6 其他連續監測儀器 50
3.5 氣流軌跡模式(NOAA HYSPLIT) 52
3.6 ISORROPIA Ⅱ模式分析 54
3.7 氣膠型態分類法 55
3.8 硫氧化比值(SOR)與氮氧化比值(NOR) 57
第四章 結果與討論 58
4.1 採樣數據相關問題及QA/QC 58
4.2 鹿林山氣膠水溶性無機離子短時間變化 60
4.2.1 自動監測與手動量測水溶性無機離子比對 60
4.2.2 鹿林山氣象資料、氣體、氣膠、水溶性無機離子動態變化 63
4.2.3 雲霧、山谷風、生質燃燒事件判斷條件 67
4.2.4 鹿林山氣膠水溶性無機離子不同氣流軌跡來源動態變化 69
4.3 鹿林山春季生質燃燒事件氣膠、氣體及氣象參數動態變化 73
4.3.1 第一次生質燃燒事件(3月13日至3月15日) 73
4.3.2 第二次生質燃燒事件(3月17日至3月21日) 90
4.3.3 第三次生質燃燒事件(3月26日至3月29日) 102
4.3.4 第四次生質燃燒事件(4月6日至4月10日) 119
4.3.5 彙整鹿林山生質燃燒事件氣體與水溶性無機離子動態特性 136
4.4 都市氣膠水溶性無機離子短時間變化 144
4.4.1 台中市西屯氣象資料、氣體、氣膠水溶性無機離子動態變化 144
4.4.2 台中市西屯測站不同氣流軌跡來源短時間變化 151
4.5 台中市西屯測站氣膠、氣體及氣象參數特殊事件探討 153
4.5.1 第一次高濃度事件(4月17日至4月19日) 153
4.5.2 第二次高濃度事件(4月26日至4月30日) 168
4.5.3 亞硝酸根離子(NO2-)探討 181
4.6 高山與都市環境氣膠水溶性無機離子與氣膠光學厚度關係 187
4.6.1 AERONET光學參數分類氣膠型態 187
4.6.2 鹿林山短時間水溶性無機離子與AOD關聯 189
4.6.3 都市短時間水溶性無機離子與AOD關聯 192
4.7 彙整高山與都市環境氣膠成分動態特性 197
第五章 結論 199
5.1 結論 199
5.2 建議 202
參考文獻 203
附錄一、2019年春季鹿林山觀測期間逆推氣流軌跡圖 216
附錄二、2019年春季鹿林山觀測期間火點圖 225
附錄三、台中市西屯測站4月觀測期間逆推氣流軌跡圖 231
附錄四、儀器檢核狀況 233
附錄五、口試委員意見與回覆 235
參考文獻 Almeida, G.P., Bittencourt, A.T., Evangelista, M.S., Vieira-Filho, M.S., Fornaro, A., 2019. Characterization of aerosol chemical composition from urban pollution in Brazil and its possible impacts on the aerosol hygroscopicity and size distribution. Atmospheric Environment 202, 149-159.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966.
Andreae, M.O., Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews 89, 13-41.
Apituley, A., Schaap, M., Koelemeijer, R., Timmermans, R., Schoemaker, R., de Leeuw, G., 2008. Construction of satellite derived PM2. 5 maps using the relationship between AOD and PM2. 5 at the Cabauw Experimental Site for Atmospheric Research (CESAR)-The Netherlands, Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International. IEEE, pp. III-507-III-510.
Atwood, S.A., Reid, J.S., Kreidenweis, S.M., Liya, E.Y., Salinas, S.V., Chew, B.N., Balasubramanian, R., 2013. Analysis of source regions for smoke events in Singapore for the 2009 El Nino burning season. Atmospheric Environment 78, 219-230.
Ault, A.P., Peters, T.M., Sawvel, E.J., Casuccio, G.S., Willis, R.D., Norris, G.A., Grassian, V.H., 2012. Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland, Ohio. Environmental Science & Technology 46, 4331-4339.
Barsotti, F., Bartels-Rausch, T., De Laurentiis, E., Ammann, M., Brigante, M., Mailhot, G., Maurino, V., Minero, C., Vione, D., 2017. Photochemical formation of nitrite and nitrous acid (HONO) upon irradiation of nitrophenols in aqueous solution and in viscous secondary organic aerosol proxy. Environmental Science & Technology 51, 7486-7495.
Benedict, K.B., McFall, A.S., Anastasio, C., 2017. Quantum Yield of Nitrite from the Photolysis of Aqueous Nitrate above 300 nm. Environmental Science & Technology 51, 4387-4395.
Betha, R., Russell, L.M., Chen, C.L., Liu, J., Price, D.J., Sanchez, K.J., Chen, S., Lee, A.K., Collier, S.C., Zhang, Q., 2018. Larger submicron particles for emissions with residential burning in wintertime San Joaquin Valley (Fresno) than for vehicle combustion in summertime South Coast Air Basin (Fontana). Journal of Geophysical Research: Atmospheres 123, 10,526-510,545.
Biswas, K.F., Ghauri, B.M., Husain, L., 2008. Gaseous and aerosol pollutants during fog and clear episodes in South Asian urban atmosphere. Atmospheric Environment 42, 7775-7785.
Boone, E.J., Laskin, A., Laskin, J., Wirth, C., Shepson, P.B., Stirm, B.H., Pratt, K.A., 2015. Aqueous processing of atmospheric organic particles in cloud water collected via aircraft sampling. Environmental Science & Technology 49, 8523-8530.
Bougiatioti, A., Nikolaou, P., Stavroulas, I., Kouvarakis, G., Weber, R., Nenes, A., Kanakidou, M., Mihalopoulos, N., 2016. Particle water and pH in the eastern Mediterranean: source variability and implications for nutrient availability. Atmospheric Chemistry and Physics 16, 4579-4591.
Bukowiecki, N., Steinbacher, M., Henne, S., Nguyen, N.A., Nguyen, X.A., Le Hoang, A., Nguyen, D.L., Duong, H.L., Engling, G., Wehrle, G., 2019. Effect of large-scale biomass burning on aerosol optical properties at the GAW Regional Station Pha Din, Vietnam. Aerosol and Air Quality Research 19, 1172-1187.
Cao, J., Shen, Z., Chow, J.C., Qi, G., Watson, J.G., 2009. Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology 7, 161-168.
Chang, S.-Y., Lee, C.-T., Chou, C.C.-K., Liu, S.-C., Wen, T.-X., 2007. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan. Atmospheric Environment 41, 1936-1949.
Chen, H., Yin, S., Li, X., Wang, J., Zhang, R., 2018. Analyses of biomass burning contribution to aerosol in Zhengzhou during wheat harvest season in 2015. Atmospheric Research 207, 62-73.
Chen, L., Li, Q., Wu, D., Sun, H., Wei, Y., Ding, X., Chen, H., Cheng, T., Chen, J., 2019. Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Science of The Total Environment 674, 179-188.
Chen, W., Wang, X., Cohen, J.B., Zhou, S., Zhang, Z., Chang, M., Chan, C.-Y., 2016. Properties of aerosols and formation mechanisms over southern China during the monsoon season. Atmospheric Chemistry and Physics 16.
Cheng, S.-h., Yang, L.-x., Zhou, X.-h., Xue, L.-k., Gao, X.-m., Zhou, Y., Wang, W.-x., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances 2, e1601530.
Chien, C.-L., Tsai, C.-J., Sheu, S.-R., Cheng, Y.-H., Starik, A.M., 2015. High-efficiency parallel-plate wet scrubber (PPWS) for soluble gas removal. Separation and Purification Technology 142, 189-195.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
de Hoogh, K., Héritier, H., Stafoggia, M., Künzli, N., Kloog, I., 2018. Modelling daily PM2. 5 concentrations at high spatio-temporal resolution across Switzerland. Environmental Pollution 233, 1147-1154.
Degraeuwe, B., Thunis, P., Clappier, A., Weiss, M., Lefebvre, W., Janssen, S., Vranckx, S., 2016. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution–scenario analysis for the city of Antwerp, Belgium. Atmospheric Environment 126, 218-224.
Ding, J., Zhang, Y., Zhao, P., Tang, M., Xiao, Z., Zhang, W., Zhang, H., Yu, Z., Du, X., Li, L., 2019. Comparison of size-resolved hygroscopic growth factors of urban aerosol by different methods in Tianjin during a haze episode. Science of The Total Environment 678, 618-626.
Draxler, R.R., 2011. Hysplit (hybrid single-particle lagrangian integrated trajectory) model access via NOAA ARL ready website. http://ready. arl. noaa. gov/HYSPLIT. php.
Dubovik, O., Holben, B., Eck, T.F., Smirnov, A., Kaufman, Y.J., King, M.D., Tanré, D., Slutsker, I., 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of The Atmospheric Sciences 59, 590-608.
Echalar, F., Gaudichet, A., Cachier, H., Artaxo, P., 1995. Aerosol emissions by tropical forest and savanna biomass burning: characteristic trace elements and fluxes. Geophysical Research Letters 22, 3039-3042.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca 2+–Mg 2+–NH 4+–Na+–SO 4 2−–NO 3−–Cl−–H 2 O aerosols. Atmospheric Chemistry and Physics 7, 4639-4659.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D.G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment 42, 2023-2036.
Gácita, M.S., Longo, K.M., Freire, J.L., Freitas, S.R., Martin, S.T., 2017. Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia. Atmospheric Chemistry & Physics 17.
Grantz, D., Garner, J., Johnson, D., 2003. Ecological effects of particulate matter. Environment International 29, 213-239.
Guo, H., Sullivan, A.P., Campuzano‐Jost, P., Schroder, J.C., Lopez‐Hilfiker, F.D., Dibb, J.E., Jimenez, J.L., Thornton, J.A., Brown, S.S., Nenes, A., 2016. Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States. Journal of Geophysical Research: Atmospheres 121.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K.M., Capps, S.L., Hite Jr, J., Carlton, A., Lee, S.-H., Bergin, M., Ng, N., 2015. Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry and Physics 15.
Gupta, P., Christopher, S.A., 2009. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. Journal of Geophysical Research: Atmospheres 114.
HAN, L., CHEN, Y., JIA, L., CHENG, S., XU, Y., NING, H., ZHANG, P., 2014. Heterogeneous reactions of NO 2 on the surface of MgO particles. SCIENTIA SINICA Chimica 44, 2004-2012.
He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z., Chen, G., 2012. Spatial and seasonal variability of PM2. 5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics 12, 1377.
Hennigan, C., Izumi, J., Sullivan, A., Weber, R., Nenes, A., 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics 15, 2775-2790.
Henning, S., Weingartner, E., Schwikowski, M., Gäggeler, H., Gehrig, R., Hinz, K.P., Trimborn, A., Spengler, B., Baltensperger, U., 2003. Seasonal variation of water‐soluble ions of the aerosol at the high‐alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research: Atmospheres 108.
Herner, J.D., Hu, S., Robertson, W.H., Huai, T., Collins, J.F., Dwyer, H., Ayala, A., 2009. Effect of advanced aftertreatment for PM and NO x control on heavy-duty diesel truck emissions. Environmental Science & Technology 43, 5928-5933.
Holben, B.N., Eck, T.F., Slutsker, I., Tanre, D., Buis, J., Setzer, A., Vermote, E., Reagan, J.A., Kaufman, Y., Nakajima, T., 1998. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment 66, 1-16.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., Wang, S.-H., 2017. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants. Atmospheric Environment 150, 366-378.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695.
Jung, C.H., Kim, Y.P., 2006. Numerical estimation of the effects of condensation and coagulation on visibility using the moment method. Journal of Aerosol Science 37, 143-161.
Kirchstetter, T., Thatcher, T., 2012. Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation. Atmospheric Chemistry and Physics 12, 6067-6072.
Kleffmann, J., 2007. Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. ChemPhysChem 8, 1137-1144.
Kleffmann, J., Kurtenbach, R., Lörzer, J., Wiesen, P., Kalthoff, N., Vogel, B., Vogel, H., 2003. Measured and simulated vertical profiles of nitrous acid—Part I: Field measurements. Atmospheric Environment 37, 2949-2955.
Koppmann, R., Czapiewski, K.v., Reid, J., 2005. A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide, methane, volatile organic compounds, and nitrogen containing compounds. Atmospheric Chemistry and Physics Discussions, 10455-10516.
Lack, D.A., Langridge, J.M., Bahreini, R., Cappa, C.D., Middlebrook, A.M., Schwarz, J.P., 2012. Brown carbon and internal mixing in biomass burning particles. Proceedings of the National Academy of Sciences.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, J., Kim, J., Song, C., Kim, S., Chun, Y., Sohn, B., Holben, B., 2010. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmospheric Environment 44, 3110-3117.
Li, H., Wang, Q.g., Yang, M., Li, F., Wang, J., Sun, Y., Wang, C., Wu, H., Qian, X., 2016. Chemical characterization and source apportionment of PM2. 5 aerosols in a megacity of Southeast China. Atmospheric Research 181, 288-299.
Li, L., Yin, Y., Kong, S., Wen, B., Chen, K., Yuan, L., Li, Q., 2014. Altitudinal effect to the size distribution of water soluble inorganic ions in PM at Huangshan, China. Atmospheric Environment 98, 242-252.
Li, R., Hu, Y., Li, L., Fu, H., Chen, J., 2017. Real-time aerosol optical properties, morphology and mixing states under clear, haze and fog episodes in the summer of urban Beijing. Atmospheric Chemistry and Physics 17, 5079-5093.
Li, W., Shao, L., 2010. Characterization of mineral particles in winter fog of Beijing analyzed by TEM and SEM. Environmental Monitoring and Assessment 161, 565-573.
Lin, Y.C., Lin, C.Y., Lin, P.H., Engling, G., Lin, Y.C., Lan, Y.Y., Chang, C.W.J., Kuo, T.H., Hsu, W.T., Ting, C.C., 2013. Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric Environment 64, 358-365.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere 183, 119-131.
Ma, J., Xu, X., Zhao, C., Yan, P., 2012. A review of atmospheric chemistry research in China: Photochemical smog, haze pollution, and gas-aerosol interactions. Advances in Atmospheric Sciences 29, 1006-1026.
Maxwell‐Meier, K., Weber, R., Song, C., Orsini, D., Ma, Y., Carmichael, G., Streets, D., 2004. Inorganic composition of fine particles in mixed mineral dust–pollution plumes observed from airborne measurements during ACE‐Asia. Journal of Geophysical Research: Atmospheres 109.
Myhre, G., Bellouin, N., Berglen, T.F., Berntsen, T.K., Boucher, O., Grini, A., Ivar, S.M., Johnsrud, I., Michael, I.M., Stordal, F., 2007. Comparison of the radiative properties and direct radiative effect of aerosols from a global aerosol model and remote sensing data over ocean. Tellus B: Chemical and Physical Meteorology 59, 115-129.
NeiláCape, J., 1996. Nitrous acid and nitrite in the atmosphere. Chemical Society Reviews 25, 361-369.
Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123-152.
Nicolás, J., Castañer, R., Galindo, N., Yubero, E., Crespo, J., Clemente, A., 2019. Analysis of aerosol scattering properties and PM10 concentrations at a mountain site influenced by mineral dust transport. Atmospheric Environment.
O′neill, N., Eck, T., Smirnov, A., Holben, B., Thulasiraman, S., 2003. Spectral discrimination of coarse and fine mode optical depth. Journal of Geophysical Research: Atmospheres 108.
O’Neill, N.T., Dubovik, O., Eck, T.F., 2001. Modified Ångström exponent for the characterization of submicrometer aerosols. Applied Optics 40, 2368-2375.
Ocskay, R., Salma, I., Wang, W., Maenhaut, W., 2006. Characterization and diurnal variation of size-resolved inorganic water-soluble ions at a rural background site. Journal of Environmental Monitoring 8, 300-306.
Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmospheric Environment. Part A. General Topics 24, 815-822.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1243-1259.
Page, S.E., Siegert, F., Rieley, J.O., Boehm, H.-D.V., Jaya, A., Limin, S., 2002. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61.
Parworth, C.L., Young, D.E., Kim, H., Zhang, X., Cappa, C.D., Collier, S., Zhang, Q., 2017. Wintertime water‐soluble aerosol composition and particle water content in Fresno, California. Journal of Geophysical Research: Atmospheres 122, 3155-3170.
Pathak, R.K., Louie, P.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pathak, R.K., Yao, X., Lau, A.K., Chan, C.K., 2003. Acidity and concentrations of ionic species of PM2. 5 in Hong Kong. Atmospheric Environment 37, 1113-1124.
Peppler, R.A., Bahrmann, C., Barnard, J.C., Campbell, J., Cheng, M.-D., Ferrare, R., Halthore, R., HeiIman, L., Hlavka, D., Laulainen, N.S., 2000. ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires. Bulletin of the American Meteorological Society 81, 2563-2592.
Pierson, W.R., Brachaczek, W.W., 1988. Coarse-and fine-particle atmospheric nitrate and HNO3 (g) in Claremont, California, during the 1985 Nitrogen Species Methods Comparison Study. Atmospheric Environment (1967) 22, 1665-1668.
Pokhrel, R.P., Wagner, N.L., Langridge, J.M., Lack, D.A., Jayarathne, T., Stone, E.A., Stockwell, C.E., Yokelson, R.J., Murphy, S.M., 2016. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC/OC for aerosol emissions from biomass burning. Atmospheric Chemistry and Physics 16, 9549-9561.
Pratt, K.A., Prather, K.A., 2010. Aircraft measurements of vertical profiles of aerosol mixing states. Journal of Geophysical Research: Atmospheres 115.
Raja, S., Raghunathan, R., Kommalapati, R.R., Shen, X., Collett Jr, J.L., Valsaraj, K.T., 2009. Organic composition of fogwater in the Texas–Louisiana gulf coast corridor. Atmospheric Environment 43, 4214-4222.
Rastogi, N., Singh, A., Sarin, M., Singh, D., 2016. Temporal variability of primary and secondary aerosols over northern India: Impact of biomass burning emissions. Atmospheric Environment 125, 396-403.
Rastogi, N., Singh, A., Singh, D., Sarin, M., 2014. Chemical characteristics of PM2. 5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation. Environmental Pollution 184, 563-569.
Sörgel, M., Trebs, I., Serafimovich, A., Moravek, A., Held, A., Zetzsch, C., 2011. Simultaneous HONO measurements in and above a forest canopy: influence of turbulent exchange on mixing ratio differences. Atmospheric Chemistry and Physics 11, 841-855.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Singla, V., Mukherjee, S., Kristensson, A., Pandithurai, G., Dani, K.K., Kumar, V.A., 2018. New Particle Formation at a High Altitude Site in India: Impact of Fresh Emissions and Long Range Transport. Atmospheric Chemistry and Physics Discuss.
Smirnov, A., Holben, B., Eck, T., Dubovik, O., Slutsker, I., 2000. Cloud-screening and quality control algorithms for the AERONET database. Remote Sensing of Environment 73, 337-349.
Song, C.H., Park, M.E., Lee, E.J., Lee, J.H., Lee, B.K., Lee, D.S., Kim, J., Han, J.S., Moon, K.J., Kondo, Y., 2009. Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmospheric Environment 43, 2168-2173.
Stavroulas, I., Bougiatioti, A., Grivas, G., Paraskevopoulou, D., Tsagkaraki, M., Zarmpas, P., Liakakou, E., Gerasopoulos, E., Mihalopoulos, N., 2019. Sources and processes that control the submicron organic aerosol composition in an urban Mediterranean environment (Athens): a high temporal-resolution chemical composition measurement study. Atmospheric Chemistry and Physics 19, 901-919.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Su, H., Cheng, Y., Oswald, R., Behrendt, T., Trebs, I., Meixner, F.X., Andreae, M.O., Cheng, P., Zhang, Y., Pöschl, U., 2011. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333, 1616-1618.
Sun, Y., Zhuang, G., Tang, A., Wang, Y., An, Z., 2006. Chemical characteristics of PM2. 5 and PM10 in haze− fog episodes in Beijing. Environmental Science & Technology 40, 3148-3155.
Takeuchi, M., Miyazaki, Y., Tanaka, H., Isobe, T., Okochi, H., Ogata, H., 2017. High Time-resolution monitoring of free-tropospheric sulfur dioxide and nitric acid at the summit of Mt. Fuji, Japan. Water, Air, & Soil Pollution 228, 325.
Thepnuan, D., Chantara, S., Lee, C.-T., Lin, N.-H., Tsai, Y.I., 2019. Molecular markers for biomass burning associated with the characterization of PM2. 5 and component sources during dry season haze episodes in Upper South East Asia. Science of The Total Environment 658, 708-722.
Tian, M., Wang, H., Chen, Y., Zhang, L., Shi, G., Liu, Y., Yu, J., Zhai, C., Wang, J., Yang, F., 2017. Highly time-resolved characterization of water-soluble inorganic ions in PM2. 5 in a humid and acidic mega city in Sichuan Basin, China. Science of the Total Environment 580, 224-234.
Truex, T.J., Pierson, W.R., McKee, D.E., 1980. Sulfate in diesel exhaust. Environmental Science & Technology 14, 1118-1121.
Tsai, J.-H., Tsai, S.-M., Wang, W.-C., Chiang, H.-L., 2016. Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan. Environmental Science and Pollution Research 23, 16722-16737.
Valenzuela, A., Olmo, F., Lyamani, H., Antón, M., Titos, G., Cazorla, A., Alados-Arboledas, L., 2015. Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain). Atmospheric Research 154, 1-13.
van Pinxteren, D., Fomba, K.W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J.L., Herrmann, H., 2016. Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon. Atmospheric Chemistry and Physics 16, 3185-3205.
VandenBoer, T., Markovic, M., Sanders, J., Ren, X., Pusede, S., Browne, E., Cohen, R., Zhang, L., Thomas, J., Brune, W.H., 2014. Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010. Journal of Geophysical Research: Atmospheres 119, 9093-9106.
VandenBoer, T.C., Young, C.J., Talukdar, R.K., Markovic, M.Z., Brown, S.S., Roberts, J.M., Murphy, J.G., 2015. Nocturnal loss and daytime source of nitrous acid through reactive uptake and displacement. Nature Geoscience 8, 55.
Vecchi, R., Bernardoni, V., Valentini, S., Piazzalunga, A., Fermo, P., Valli, G., 2018. Assessment of light extinction at a European polluted urban area during wintertime: Impact of PM1 composition and sources. Environmental Pollution 233, 679-689.
Verma, V., Fang, T., Guo, H., King, L., Bates, J., Peltier, R., Edgerton, E., Russell, A., Weber, R., 2014. Reactive oxygen species associated with water-soluble PM 2.5 in the southeastern United States: spatiotemporal trends and source apportionment. Atmospheric Chemistry and Physics 14, 12915-12930.
Wang, G., Li, J., Cheng, C., Hu, S., Xie, M., Gao, S., Zhou, B., Dai, W., Cao, J., An, Z., 2011a. Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and east China during spring 2009-Part 1: EC, OC and inorganic ions. Atmospheric Chemistry and Physics 11, 4221.
Wang, G., Wang, H., Yu, Y., Gao, S., Feng, J., Gao, S., Wang, L., 2003. Chemical characterization of water-soluble components of PM10 and PM2. 5 atmospheric aerosols in five locations of Nanjing, China. Atmospheric Environment 37, 2893-2902.
Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C.E., Wang, Y., 2019. Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Science of the Total Environment 646, 564-572.
Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., Wang, W., Yang, X., Sui, X., Yao, L., 2015. HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Science of the Total Environment 538, 93-101.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett Jr, J.L., Wang, W., 2011b. Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmospheric Research 99, 434-442.
Weller, C., Herrmann, H., 2015. Kinetics of nitrosamine and amine reactions with NO3 radical and ozone related to aqueous particle and cloud droplet chemistry. Atmospheric Research 151, 64-71.
Wen, L., Xue, L., Wang, X., Xu, C., Chen, T., Yang, L., Wang, T., Zhang, Q., Wang, W., 2018. Summertime fine particulate nitrate pollution in the North China Plain: increasing trends, formation mechanisms and implications for control policy. Atmospheric Chemistry and Physics 18, 11261-11275.
Whalley, L., Stone, D., George, I., Mertes, S., Van Pinxteren, D., Tilgner, A., Herrmann, H., Evans, M., Heard, D., 2015. The influence of clouds on radical concentrations: observations and modelling studies of HO x during the Hill Cap Cloud Thuringia (HCCT) campaign in 2010. Atmospheric Chemistry and Physics 15, 3289-3301.
Wild, R.J., Dubé, W.P., Aikin, K.C., Eilerman, S.J., Neuman, J.A., Peischl, J., Ryerson, T.B., Brown, S.S., 2017. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmospheric Environment 148, 182-189.
Wong, K., Oh, H.-J., Lefer, B., Rappenglück, B., Stutz, J., 2011. Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmospheric Chemistry and Physics 11, 3595-3609.
Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., 2019. Changes in Aerosol Chemistry From 2014 to 2016 in Winter in Beijing: Insights From High‐Resolution Aerosol Mass Spectrometry. Journal of Geophysical Research: Atmospheres 124, 1132-1147.
Xu, X., Zhao, W., Fang, B., Zhou, J., Wang, S., Zhang, W., Venables, D.S., Chen, W., 2018. Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols. Optics Express 26, 33484-33500.
Yan, C., Tham, Y.J., Zha, Q., Wang, X., Xue, L., Dai, J., Wang, Z., Wang, T., 2019. Fast heterogeneous loss of N2O5 leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China. Science of The Total Environment 677, 637-647.
Yang, C.-F.O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Yang, L., Wang, S., Duan, S., Yan, Q., Jiang, N., Zhang, R., Li, S., 2020. Characteristics and formation mechanisms of secondary inorganic ions in PM2. 5 during winter in a central city of China: Based on a high time resolution data. Atmospheric Research 233, 104696.
Yang, Q., Yuan, Q., Yue, L., Li, T., Shen, H., Zhang, L., 2019. The relationships between PM2. 5 and aerosol optical depth (AOD) in mainland China: About and behind the spatio-temporal variations. Environmental Pollution 248, 526-535.
Yao, X., Ling, T.Y., Fang, M., Chan, C.K., 2006. Comparison of thermodynamic predictions for in situ pH in PM2. 5. Atmospheric Environment 40, 2835-2844.
Yu, G.-H., Zhang, Y., Cho, S.-Y., Park, S., 2017. Influence of haze pollution on water-soluble chemical species in PM2. 5 and size-resolved particles at an urban site during fall. Journal of Environmental Sciences 57, 370-382.
Zhai, J., Lu, X., Li, L., Zhang, Q., Zhang, C., Chen, H., Yang, X., Chen, J., 2017. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. Atmospheric Chemistry and Physics 17, 7481-7493.
Zhang, L., Vet, R., Wiebe, A., Mihele, C., Sukloff, B., Chan, E., Moran, M., Iqbal, S., 2008. Characterization of the size-segregated water-soluble inorganic ions at eight Canadian rural sites. Atmospheric Chemistry and Physics 8, 7133-7151.
Zhang, T., Cao, J., Tie, X., Shen, Z., Liu, S., Ding, H., Han, Y., Wang, G., Ho, K., Qiang, J., 2011. Water-soluble ions in atmospheric aerosols measured in Xi′an, China: seasonal variations and sources. Atmospheric Research 102, 110-119.
Zhang, X., Xu, J., Kang, S., Liu, Y., Zhang, Q., 2018a. Chemical characterization of long-range transport biomass burning emissions to the Himalayas: insights from high-resolution aerosol mass spectrometry. Atmospheric Chemistry and Physics 18, 4617-4638.
Zhang, Y., Huang, W., Cai, T., Fang, D., Wang, Y., Song, J., Hu, M., Zhang, Y., 2016. Concentrations and chemical compositions of fine particles (PM2. 5) during haze and non-haze days in Beijing. Atmospheric Research 174, 62-69.
Zhang, Y., Wen, L., Chen, J., Wang, X., Xue, L., Yang, L., Wang, L., Li, Z., Yu, C., Chen, T., 2018b. Trend in fine sulfate concentrations and the associated secondary formation processes at an urban site in north China. Aerosol and Air Quality Research 18, 1519-1530.
Zhao, J., Zhang, F., Xu, Y., Chen, J., 2011. Characterization of water-soluble inorganic ions in size-segregated aerosols in coastal city, Xiamen. Atmospheric Research 99, 546-562.
Zhao, Y., Gao, Y., 2008. Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment 42, 4063-4078.
Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., Qiu, Y., 2017. Analysis of influential factors for the relationship between PM_ (2.5) and AOD in Beijing. Atmospheric Chemistry and Physics 17, 13473-13489.
Zhou, Y., Xue, L., Wang, T., Gao, X., Wang, Z., Wang, X., Zhang, J., Zhang, Q., Wang, W., 2012. Characterization of aerosol acidity at a high mountain site in central eastern China. Atmospheric environment 51, 11-20.
Zhu, C., Chen, J., Wang, X., Li, J., Wei, M., Xu, C., Xu, X., Ding, A., Collett Jr, J.L., 2018. Chemical Composition and Bacterial Community in Size-Resolved Cloud Water at the Summit of Mt. Tai, China. Aerosol and Air Quality Research 18, 1-14.
Zhu, C., Xiang, B., Zhu, L., Cole, R., 2008. Determination of absorption cross sections of surface-adsorbed HNO3 in the 290–330 nm region by Brewster angle cavity ring-down spectroscopy. Chemical Physics Letters 458, 373-377.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
林家慶,2008。鹿林山空氣品質背景監測之背景值分析, 大氣物理所碩
士論文。國立中央大學。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性,環境工程研究
所碩士論文。國立中央大學。

林書輝,2013。2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化,
環境工程研究所碩士論文。國立中央大學。
張士昱,2013。乾、濕兩用之氣體吸附裝置。中華民國發明專利第M467055
號。
蔡茗宇,2014。2013年春季鹿林山和夏季龍潭氣膠水溶性無機離子短時間動態
變化特性,環境工程研究所碩士論文。國立中央大學。
蔡承佑,2016。2014年鹿林山氣膠水溶性無機離子短時間動態變化特性,
環境工程研究所碩士論文。國立中央大學。
姜明辰,2016。2015年鹿林山氣膠水溶性無機離子短時間動態變化特性,
環境工程研究所碩士論文。國立中央大學。
張士昱,2016。氣膠收集裝置。中華民國發明專利第M515102號。
陳威任,2018。2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣
膠水溶性無機離子短時間動態變化,環境工程研究所碩士論文。國
立中央大學。
陳彥銘,2018。2016~2017年東亞背景、生質燃燒傳輸及高山雲霧水氣膠
水溶性無機離子短時間變化,環境工程研究所碩士論文。國立中央大學。
楊孟樵,2020。2017~2018年台灣都市與高山氣膠水溶性無機離子短時間動態
變化特性,環境工程研究所碩士論文。國立中央大學。
林寬昱,2020。2019年鹿林山背景及生質燃燒煙團傳輸氣膠特性及光學特
特性解析,環境工程研究所碩士論文。國立中央大學。
李崇德、周崇光、張士昱、蕭大智、許文昌(2019)”108年度細懸浮微粒(PM2.5)
化學成分監測及分析計畫”,期末報告(定稿本),環保署,台北,
    108年11月。
環保署檢驗所 (2005) 環境檢驗品方法偵測及縣測定指引(NIEA-PA107),
中華民國94年1月15日實施。
指導教授 李崇德 審核日期 2020-4-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明