博碩士論文 106328021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.116.28.60
姓名 陳勝嘉(Sheng-Chia Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 高分子微流體晶片智慧製造之評估與模擬研究
(Polymer Microfluidic Chips Intelligent Manufacturing on assessment and simulation research)
相關論文
★ 奈米矽晶片於葡萄糖電化學檢測分析研究與電極應用★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究
★ 多重微流體晶片機械應力刺激細胞培養之研究★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 複合式物理力的生物反應器自動化與控制設計
★ 外部致動之微流體機電控制平台★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 以自發性化學蝕刻法製備矽奈米結構成長控制之研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 二次金沉積奈米矽晶片對質譜檢測分析研究與應用★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文透過智慧製造概念結合微流體製程方法所需要的參數,並同時考量到製造產量、成本與時間來達到流程依據的判別的方法,來達到微流體商業化的目的。
我們根據前端材料解析度、粗糙度、成本、產量,分別設定的25μm、50μm、40K、5min與後端結合強度、結合時間設定的20mpa、5min進行區分模組判別式流向,流程會根據輸入理想的條件值以流向最終的製造方法,並實際提取案例以實際驗證預測流向正確性,最後將預測結果方法轉換成有效的ID值並實際在CIROS軟體中進行工廠內產線製作流程,此工廠可根據載盤依序輸送至加工站進行訊號判別,透過機台設定的訊號辨別進行加工,並使每個加工站皆能自主完成作業,機械手臂的操作能準確的定位抓取材料與位置,以實踐智慧化工廠內少量多樣性產品的概念驗證,透過取代人為操作使工廠的效率能得到明顯的提升,過程中人力只需達到監督的作業以監視產品質量。
摘要(英) This thesis proposes concept of smart manufacturing is combined with the parameters required by the microfluidic process method, and at the same time, the manufacturing yield, cost and time are considered to achieve the process-based identification method to achieve the purpose of microfluidic commercialization.
According to the front-end material resolution , roughness , cost , and output , we set 25μm , 50μm , 40K , 5min and the back end bonding strength , and the bonding time set 20mpa , 5min to distinguish the module discriminant flow direction , and the process will be based on the input ideal The condition value of the flow to the final manufacturing method , and the actual case is extracted to actually verify the correctness of the predicted flow direction .Finally ,the predicted result method is converted into a valid ID value and the production lines production process of the factory is actually carried out in the CIROS software . This factory can According to the trays are sequentially transported to the processing station for signal identification, processing is performed through the signal identification set by the machine, and each processing station can complete the work autonomously, and the operation of the robotic arm can accurately locate and grasp the material and position. Practicing the proof of concept of a small number of diverse products of the smart factory, the efficiency of the factory can be significantly improved by replacing the manual operation, and the manpower in the process only needs to be supervised to monitor the product quality.
關鍵字(中) ★ 智慧製造
★ 微流體晶片
關鍵字(英) ★ Smart manufacturing
★ Microfluidic
論文目次 摘要I
AbstractVI
致謝VII
圖目錄X
表目錄XI
一 、前言1
1-1 智慧製造與微流體系統新興市場 1
1-2 高分子聚合物 2
1-2-1 熱塑性微流體製程方法3
1-2-2 微流體技術需求4
1-3 數據驅動的智慧製造模組7
1-3-1智慧傳感器11
1-3-2智慧製造應用相關案例13
1-3-3 微流體晶片工廠現況16
1-4 研究動機19
二 、實驗設計及方法20
2-1 實驗方法20
2-2 微流體裝置系統製程20
2-2-1模組預測範圍21
2-2-2 生成工廠系統建模實踐23
三 、結果與討論25
3-1流道製程技術之差異25
3-1-1 流道質量要求27
3-1-2 流道尺寸要求27
3-1-3 製造產量要求28
3-1-4 製造成本要求29
3-2結合製程參數性能之差異 29
3-2-1 結合晶片強度要求31
3-2-2 結合晶片時間要求31
3-3模組成形過程32
3-3-1前端模組成形過程32
3-3-2 後端模組成形過程36
3-3-3 以類神經網路成形方法37
3-4 模組預測結果39
3-5 模擬智慧工廠製造實踐42
四 、結論46
References47
附錄59
參考文獻 1. Rüßmann, M., et al., Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group, 2015. 9.
2. Manz, A., N. Graber, and H.á. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990. 1(1-6): p. 244-248.
3. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507(7491): p. 181.
4. microfluidics-market. Available from: https://www.databridgemarketresearch.com/reports/global-microfluidics-market.
5. Amanullah, M.A., et al., Deep learning and big data technologies for IoT security. Computer Communications, 2020.
6. Agrawal, D., et al. Data management challenges in cloud computing infrastructures. in International Workshop on Databases in Networked Information Systems. 2010. Springer.
7. Henry, A.C., et al., Surface modification of poly (methyl methacrylate) used in the fabrication of microanalytical devices. Analytical chemistry, 2000. 72(21): p. 5331-5337.
8. Roberts, M.A., et al., UV laser machined polymer substrates for the development of microdiagnostic systems. Analytical chemistry, 1997. 69(11): p. 2035-2042.
9. Roy, S., et al., Surface analysis, hydrophilic enhancement, ageing behavior and flow in plasma modified cyclic olefin copolymer (COC)-based microfluidic devices. Sensors and Actuators B: Chemical, 2010. 150(2): p. 537-549.
10. Andersen, N.K. and R. Taboryski, Multi-height structures in injection molded polymer. Microelectronic Engineering, 2015. 141: p. 211-214.
11. Kadoya, S., et al., Structure size effect on polymer infiltration in injection molded direct joining. Precision Engineering. 67: p. 100-109.
12. Lu, Y., K. Jiang, and M. Wang, Study on rheological properties of in-mold co-injection self-reinforced polymer melt. Polymer Testing, 2020: p. 106910.
13. Evens, T., et al., A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manufacturing Letters, 2020. 24: p. 29-32.
14. Rabhi, F., et al., Influence of elastic-viscoplastic behaviour on the filling efficiency of amorphous thermoplastic polymer during the micro hot embossing process. Journal of Manufacturing Processes, 2020. 59: p. 487-499.
15. Wang, J., et al., Recovery behavior of thermoplastic polymers in micro hot embossing process. Journal of Materials Processing Technology, 2017. 243: p. 205-216.
16. Kuo, C.-C. and T.-S. Chiang, Development of a precision hot embossing tool with microstructures for microfabrication. The International Journal of Advanced Manufacturing Technology, 2017. 91(1-4): p. 1321-1326.
17. Li, L., Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device, in Electroporation Protocols. 2020, Springer. p. 21-27.
18. Yeo, L., et al., Investigation of hot roller embossing for microfluidic devices. Journal of Micromechanics and Microengineering, 2009. 20(1): p. 015017.
19. Mohammed, M.I., et al., Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly (methylmethacrylate) polymer. Journal of Micromechanics and Microengineering, 2016. 27(1): p. 015021.
20. Mohammed, M.I., et al., Improved manufacturing quality and bonding of laser machined microfluidic systems. Procedia Technology, 2015. 20: p. 219-224.
21. Bilican, I. and M.T. Guler, Assessment of PMMA and polystyrene based microfluidic chips fabricated using CO2 laser machining. Applied Surface Science, 2020. 534: p. 147642.
22. Zhang, Y. and J. Wang, Fabrication of functionally graded porous polymer structures using thermal bonding lamination techniques. Procedia Manufacturing, 2017. 10: p. 866-875.
23. Zhou, M., et al., Molecular Dynamics Simulation on the Effect of Bonding Pressure on Thermal Bonding of Polymer Microfluidic Chip. Polymers, 2019. 11(3): p. 557.
24. Nageswaran, G., L. Jothi, and S. Jagannathan, Plasma Assisted Polymer Modifications, in Non-Thermal Plasma Technology for Polymeric Materials. 2019, Elsevier. p. 95-127.
25. Pečar, B., M. Možek, and D. Vrtačnik, Thermoplastic-PDMS polymer covalent bonding for microfluidic applications. Informacije MIDEM, 2017. 47(3): p. 147-154.
26. Faghih, M.M. and M.K. Sharp, Solvent-based bonding of PMMA–PMMA for microfluidic applications. Microsystem Technologies, 2019. 25(9): p. 3547-3558.
27. Aadhy, S., et al., Comparative studies of energy saving polymers and fabrication of high performance transparent polymer by solvent bonding. Journal of Polymer Engineering, 2018. 39(1): p. 68-75.
28. Schwenter, J., et al., Adhesive bonding to polymer infiltrated ceramic. Dental materials journal, 2016. 35(5): p. 796-802.
29. Yin, Z., E. Cheng, and H. Zou, Fast microfluidic chip fabrication technique by laser erosion and sticky tape assist bonding technique. Journal of nanoscience and nanotechnology, 2018. 18(6): p. 4082-4086.
30. Guckenberger, D.J., et al., Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab on a Chip, 2015. 15(11): p. 2364-2378.
31. Serra, M., et al., A simple and low-cost chip bonding solution for high pressure, high temperature and biological applications. Lab on a Chip, 2017. 17(4): p. 629-634.
32. Taghizadeh, S., A. Özdemir, and O. Uluer, Warpage prediction in plastic injection molded part using artificial neural network. Iranian Journal of Science and Technology. Transactions of Mechanical Engineering, 2013. 37(M2): p. 149.
33. D’Addona, D.M., et al., Prediction of poly-methyl-methacrylate laser milling process characteristics based on neural networks and fuzzy data. Procedia Cirp, 2016. 41: p. 981-986.
34. Chiu, H.-W. and C.-H. Lee, Prediction of machining accuracy and surface quality for CNC machine tools using data driven approach. Advances in Engineering Software, 2017. 114: p. 246-257.
35. Park, H.-s., et al., Development of smart machining system for optimizing feedrates to minimize machining time. Journal of Computational Design and Engineering, 2018. 5(3): p. 299-304.
36. Moreira, L.C., et al., Supervision controller for real-time surface quality assurance in CNC machining using artificial intelligence. Computers & Industrial Engineering, 2019. 127: p. 158-168.
37. Yoon, J.-S., S.-J. Shin, and S.-H. Suh, A conceptual framework for the ubiquitous factory. International Journal of Production Research, 2012. 50(8): p. 2174-2189.
38. Lee, H., K. Ryu, and Y. Cho, A framework of a smart injection molding system based on real-time data. Procedia Manufacturing, 2017. 11: p. 1004-1011.
39. Wang, S., et al., Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 2016. 12(1): p. 3159805.
40. Taking Prototypes to Production. Available from: http://www.acamp.ca/.
41. Microfluidic ChipShop. Available from: https://www.microfluidic-chipshop.com/.
42. Epigem Limited. Available from: https://www.epigem.co.uk/.
43. Schott MiniFab. Available from: https://schott-minifab.com/.
44. SIMTech Microfluidics Foundry. Available from: http://www.memsnet.org/news/.
45. Teledyne Micralyne Everywhereyoulook. Available from: http://www.micralyne.com/.
46. thinXXS Microtechnology. Available from: https://www.thinxxs.com/.
47. Romoli, L., G. Tantussi, and G. Dini, Experimental approach to the laser machining of PMMA substrates for the fabrication of microfluidic devices. Optics and Lasers in Engineering, 2011. 49(3): p. 419-427.
48. Mathur, A., et al., Characterisation of PMMA microfluidic channels and devices fabricated by hot embossing and sealed by direct bonding. Current Applied Physics, 2009. 9(6): p. 1199-1202.
49. Klank, H., J.P. Kutter, and O. Geschke, CO 2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab on a Chip, 2002. 2(4): p. 242-246.
50. Tofteberg, T., H. Amédro, and E. Andreassen, Injection molding of a diffractive optical element. Polymer Engineering & Science, 2008. 48(11): p. 2134-2142.
51. Singh, A., et al., Transparent thin thermoplastic biochip by injection-moulding and laser transmission welding. Microsystem technologies, 2013. 19(3): p. 445-453.
52. Tanzi, S., et al., Fabrication of combined-scale nano-and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process. Journal of Micromechanics and Microengineering, 2012. 22(11): p. 115008.
53. Matschuk, M. and N.B. Larsen, Injection molding of high aspect ratio sub-100 nm nanostructures. Journal of Micromechanics and Microengineering, 2012. 23(2): p. 025003.
54. Matschuk, M., H. Bruus, and N.B. Larsen, Nanostructures for all-polymer microfluidic systems. Microelectronic Engineering, 2010. 87(5-8): p. 1379-1382.
55. Li, J., C. Liu, and J. Peng, Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum. Journal of materials processing technology, 2008. 207(1-3): p. 163-171.
56. He, Y., et al., Micro structure fabrication with a simplified hot embossing method. RSC Advances, 2015. 5(49): p. 39138-39144.
57. Chantiwas, R., et al., Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. Lab on a Chip, 2010. 10(23): p. 3255-3264.
58. Ziyara, A., et al., Optimization of Hot Embossing Process for Fabrication of Microfluidic Devices.
59. Chien, R.-D., Hot embossing of microfluidic platform. International communications in heat and mass transfer, 2006. 33(5): p. 645-653.
60. Kricka, L.J., et al., Fabrication of plastic microchips by hot embossing. Lab on a Chip, 2002. 2(1): p. 1-4.
61. Narasimhan, J. and I. Papautsky, Polymer embossing tools for rapid prototyping of plastic microfluidic devices. Journal of Micromechanics and Microengineering, 2003. 14(1): p. 96.
62. Pemg, B.Y., et al., Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polymers for Advanced Technologies, 2010. 21(7): p. 457-466.
63. Jena, R., et al., Rheological (visco-elastic behaviour) analysis of cyclic olefin copolymers with application to hot embossing for microfabrication. Journal of Micromechanics and Microengineering, 2011. 21(8): p. 085029.
64. Hurth, C., et al., Direct loading of polymer matrices in plastic microchips for rapid DNA analysis: a comparative study. Electrophoresis, 2012. 33(16): p. 2604-2611.
65. Becker, H. and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators A: Physical, 2000. 83(1-3): p. 130-135.
66. Calvo-López, A., et al., Low cost and compact analytical microsystem for carbon dioxide determination in production processes of wine and beer. Analytica chimica acta, 2016. 931: p. 64-69.
67. Jena, R., et al., Effect of polymer orientation on pattern replication in a micro-hot embossing process: experiments and numerical simulation. Journal of Micromechanics and Microengineering, 2011. 21(6): p. 065007.
68. Bundgaard, F., G. Perozziello, and O. Geschke, Rapid prototyping tools and methods for all-Topas® cyclic olefin copolymer fluidic microsystems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006. 220(11): p. 1625-1632.
69. Snakenborg, D., H. Klank, and J.P. Kutter, Microstructure fabrication with a CO2 laser system. Journal of Micromechanics and microengineering, 2003. 14(2): p. 182.
70. Sun, Y., Y.C. Kwok, and N.-T. Nguyen, Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. Journal of Micromechanics and Microengineering, 2006. 16(8): p. 1681.
71. Liu, S., et al., Fabrication of Cyclo-olefin polymer-based microfluidic devices using CO2 laser ablation. Materials Research Express, 2018. 5(9): p. 095305.
72. Suriyage, N.U., et al. Fabrication, measurement, and modeling of electro-osmotic flow in micromachined polymer microchannels. in BioMEMS and Nanotechnology. 2004. International Society for Optics and Photonics.
73. Holmes, R., et al., Microwave bonding of poly (methylmethacrylate) microfluidic devices using a conductive polymer. Journal of Physics and Chemistry of Solids, 2011. 72(6): p. 626-629.
74. Chen, P.-C., et al., Optimization of micromilling microchannels on a polycarbonate substrate. International journal of precision engineering and manufacturing, 2014. 15(1): p. 149-154.
75. Phaneuf, C.R. and C.R. Forest. Direct, high-speed milling of polymer microchamber arrays. in Proceedings of the 25th Annual Meeting of the American Society for Precision Engineering, Atlanta, GA. 2010.
76. Huang, C., Polymeric nanofeatures of 100 nm using injection moulding for replication. Journal of Micromechanics and Microengineering, 2007. 17(8): p. 1518.
77. Shamsi, A., et al., Fabrication, sealing and hydrophilic modification of microchannels by hot embossing on PMMA substrate. RECENT ADVANCES in BIOMEDICAL & CHEMICAL ENGINEERING and MATERIALS SCIENCE, 2014: p. 138.
78. Chien, R.-D., Micromolding of biochip devices designed with microchannels. Sensors and Actuators A: Physical, 2006. 128(2): p. 238-247.
79. Rainelli, A., et al., Miniature flow-injection analysis manifold created by micromilling. Talanta, 2003. 61(5): p. 659-665.
80. Chung, C.-K., Y.-C. Lin, and G. Huang, Bulge formation and improvement of the polymer in CO2 laser micromachining. Journal of Micromechanics and Microengineering, 2005. 15(10): p. 1878.
81. Vannahme, C., et al., All-polymer organic semiconductor laser chips: Parallel fabrication and encapsulation. Optics Express, 2010. 18(24): p. 24881-24887.
82. Qi, H., et al., Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation. Optics and Lasers in Engineering, 2009. 47(5): p. 594-598.
83. Muck, A., et al., Fabrication of poly (methyl methacrylate) microfluidic chips by atmospheric molding. Analytical chemistry, 2004. 76(8): p. 2290-2297.
84. Shinohara, H., J. Mizuno, and S. Shoji, Fabrication of a microchannel device by hot embossing and direct bonding of poly (methyl methacrylate). Japanese journal of applied physics, 2007. 46(6R): p. 3661.
85. Yin, Z., et al., Two dimensional PMMA nanofluidic device fabricated by hot embossing and oxygen plasma assisted thermal bonding methods. Nanotechnology, 2015. 26(21): p. 215302.
86. Hu, X., et al., Fabrication of fluidic chips with 1-D nanochannels on PMMA substrates by photoresist-free UV-lithography and UV-assisted low-temperature bonding. Microfluidics and Nanofluidics, 2011. 10(6): p. 1223-1232.
87. Liu, J., et al., Plasma assisted thermal bonding for PMMA microfluidic chips with integrated metal microelectrodes. Sensors and Actuators B: Chemical, 2009. 141(2): p. 646-651.
88. Ng, S.H., et al., Corona discharge assisted thermal bonding of polymer microfluidic devices. Microsystem technologies, 2010. 16(7): p. 1181-1186.
89. Roy, S., et al., Low-temperature (below T g) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: High strength, stable hydrophilic, biocompatible surfaces. Journal of Materials Chemistry, 2011. 21(38): p. 15031-15040.
90. Shah, J.J., et al., Capillarity induced solvent-actuated bonding of polymeric microfluidic devices. Analytical chemistry, 2006. 78(10): p. 3348-3353.
91. Hsu, Y.-C. and T.-Y. Chen, Applying Taguchi methods for solvent-assisted PMMA bonding technique for static and dynamic μ-TAS devices. Biomedical microdevices, 2007. 9(4): p. 513-522.
92. Koesdjojo, M.T., Y.H. Tennico, and V.T. Remcho, Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly (methyl methacrylate) with water as a sacrificial layer. Analytical chemistry, 2008. 80(7): p. 2311-2318.
93. Ogilvie, I., et al., Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. Journal of Micromechanics and Microengineering, 2010. 20(6): p. 065016.
94. Ro, K.W., J. Liu, and D.R. Knapp, Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. Journal of chromatography A, 2006. 1111(1): p. 40-47.
95. Wallow, T.I., et al., Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab on a Chip, 2007. 7(12): p. 1825-1831.
96. Schelcher, G., et al., Cyclic olefin copolymer plasma millireactors. Lab on a Chip, 2014. 14(16): p. 3037-3042.
97. Chen, P.-C., Y.-M. Liu, and H.-C. Chou, An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel. Journal of Micromechanics and Microengineering, 2016. 26(4): p. 045003.
98. Lai, S., X. Cao, and L.J. Lee, A packaging technique for polymer microfluidic platforms. Analytical chemistry, 2004. 76(4): p. 1175-1183.
99. Liu, K., et al., PMMA microfluidic chip fabrication using laser ablation and low temperature bonding with OCA film and LOCA. Microsystem Technologies, 2017. 23(6): p. 1937-1942.
100. Goh, C., et al. Adhesive bonding of polymeric microfluidic devices. in 2009 11th Electronics Packaging Technology Conference. 2009. IEEE.
101. Riegger, L., et al., Adhesive bonding of microfluidic chips: influence of process parameters. Journal of Micromechanics and Microengineering, 2010. 20(8): p. 087003.
102. Wiedemeier, S., et al., Precision moulding of biomimetic disposable chips for droplet-based applications. Microfluidics and Nanofluidics, 2017. 21(11): p. 167.
103. Mönkkönen, K., et al., Replication of sub‐micron features using amorphous thermoplastics. Polymer Engineering & Science, 2002. 42(7): p. 1600-1608.
104. Zhang, N., et al., Replication of micro/nano-scale features by micro injection molding with a bulk metallic glass mold insert. Journal of Micromechanics and Microengineering, 2012. 22(6): p. 065019.
105. Lou, C.W., et al., A novel and rapid fabrication for microlens arrays using microinjection molding. Polymer Engineering & Science, 2011. 51(2): p. 391-402.
106. Chang, P.C. and S.J. Hwang, Experimental investigation of infrared rapid surface heating for injection molding. Journal of applied polymer science, 2006. 102(4): p. 3704-3713.
107. Park, S., et al., Injection molding micro patterns with high aspect ratio using a polymeric flexible stamper. eXPRESS Polymer Letters, 2011. 5(11): p. 950-958.
108. Zhang, N., et al., Towards nano-injection molding. Materials today, 2012. 15(5): p. 216-221.
109. Hattori, S., et al., Rapid injection molding of high-aspect-ratio nanostructures. Microelectronic Engineering, 2010. 87(5-8): p. 1546-1549.
110. Lin, Y.H., et al., Flatness and microstructure of a light guide plate fabricated by microinjection molding. Polymer Engineering & Science, 2013. 53(1): p. 212-218.
111. Lee, U.N., et al., Fundamentals of rapid injection molding for microfluidic cell-based assays. Lab on a Chip, 2018. 18(3): p. 496-504.
112. Wimberger-Friedl, R., Injection molding of sub-(mu) m grating optical elements. Journal of injection molding technology, 2000. 4(2): p. 78.
113. Lucchetta, G., et al., Influence of mould thermal properties on the replication of micro parts via injection moulding. Procedia CIRP, 2012. 2: p. 113-117.
114. Yoon, S.-h., et al. Critical factors for nanoscale injection molding. in Smart Medical and Biomedical Sensor Technology IV. 2006. International Society for Optics and Photonics.
115. Zhu, X., T.W. Simon, and T. Cui, Hot embossing at viscous state to enhance filling process for complex polymer structures. Microsystem technologies, 2012. 18(3): p. 257-265.
116. Çoğun, F., E. Yıldırım, and M. Sahir Arikan, Investigation on replication of microfluidic channels by hot embossing. Materials and Manufacturing Processes, 2017. 32(16): p. 1838-1844.
117. Juang, Y.J., L.J. Lee, and K.W. Koelling, Hot embossing in microfabrication. Part I: Experimental. Polymer Engineering & Science, 2002. 42(3): p. 539-550.
118. Becker, H. and U. Heim, Polymer hot embossing with silicon master structures. Sens Mater, 1999. 11(11): p. 297-304.
119. Lin, M.-C., et al., Study on the replication accuracy of polymer hot embossed microchannels. International Communications in Heat and Mass Transfer, 2013. 42: p. 55-61.
120. Brown, L., et al., Fabrication and characterization of poly (methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab on a Chip, 2006. 6(1): p. 66-73.
121. Martynova, L., et al., Fabrication of plastic microfluid channels by imprinting methods. Analytical chemistry, 1997. 69(23): p. 4783-4789.
122. Buch, J.S., et al., DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis. Analytical chemistry, 2004. 76(4): p. 874-881.
123. Bhattacharyya, A. and C.M. Klapperich, Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Analytical Chemistry, 2006. 78(3): p. 788-792.
124. Ueno, K., H.-B. Kim, and N. Kitamura, Characteristic Electrochemical Responses of Polymer Microchannel− Microelectrode Chips. Analytical chemistry, 2003. 75(9): p. 2086-2091.
125. Wang, Y.X., et al., Electrospray interfacing of polymer microfluidics to MALDI‐MS. Electrophoresis, 2005. 26(19): p. 3631-3640.
126. Lu, C., L.J. Lee, and Y.J. Juang, Packaging of microfluidic chips via interstitial bonding technique. Electrophoresis, 2008. 29(7): p. 1407-1414.
127. Kawazumi, H., et al., Observation of fluidic behavior in a polymethylmethacrylate-fabricated microchannel by a simple spectroscopic analysis. Lab on a Chip, 2002. 2(1): p. 8-10.
128. Chen, X., J. Shen, and M. Zhou, Rapid fabrication of a four-layer PMMA-based microfluidic chip using CO2-laser micromachining and thermal bonding. Journal of Micromechanics and Microengineering, 2016. 26(10): p. 107001.
129. Genna, S., et al., An experimental study on the surface mechanisms formation during the laser milling of PMMA. Polymer Composites, 2015. 36(6): p. 1063-1071.
130. McCann, R., et al., Microchannel fabrication on cyclic olefin polymer substrates via 1064 nm Nd: YAG laser ablation. Applied Surface Science, 2016. 387: p. 603-608.
131. Yuan, D. and S. Das, Experimental and theoretical analysis of direct-write laser micromachining of polymethyl methacrylate by CO 2 laser ablation. Journal of applied physics, 2007. 101(2): p. 024901.
132. Bai, X., et al., Passive conductivity detection for capillary electrophoresis. Analytical chemistry, 2004. 76(11): p. 3126-3131.
133. Nie, Z. and Y.S. Fung, Microchip capillary electrophoresis for frontal analysis of free bilirubin and study of its interaction with human serum albumin. Electrophoresis, 2008. 29(9): p. 1924-1931.
134. Tan, H.Y., et al., A lab-on-a-chip for detection of nerve agent sarin in blood. Lab on a Chip, 2008. 8(6): p. 885-891.
135. Dhouib, K., et al., Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab on a Chip, 2009. 9(10): p. 1412-1421.
136. Bhagat, A.A.S., et al., Re-usable quick-release interconnect for characterization of microfluidic systems. Journal of micromechanics and microengineering, 2006. 17(1): p. 42.
137. Chen, Z., et al., Fabrication and characterization of poly (methyl methacrylate) microchannels by in situ polymerization with a novel metal template. Electrophoresis, 2003. 24(18): p. 3246-3252.
138. Arroyo, M., et al., Novel all-polymer microfluidic devices monolithically integrated within metallic electrodes for SDS-CGE of proteins. Journal of Micromechanics and Microengineering, 2007. 17(7): p. 1289.
139. Yao, L., et al., Micro flow-through PCR in a PMMA chip fabricated by KrF excimer laser. Biomedical microdevices, 2005. 7(3): p. 253-257.
140. Shadpour, H., et al., Multichannel microchip electrophoresis device fabricated in polycarbonate with an integrated contact conductivity sensor array. Analytical chemistry, 2007. 79(3): p. 870-878.
141. Truckenmuller, R., et al. A new bonding process for polymer micro-and nanostructures based on near-surface degradation. in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest. 2004. IEEE.
142. Wu, Z., et al., Polymer microchips bonded by O2‐plasma activation. Electrophoresis, 2002. 23(5): p. 782-790.
143. Wang, Y., et al., A high‐performance polycarbonate electrophoresis microchip with integrated three‐electrode system for end‐channel amperometric detection. Electrophoresis, 2008. 29(9): p. 1881-1888.
144. Ahn, C.H., et al., Disposable smart lab on a chip for point-of-care clinical diagnostics. Proceedings of the IEEE, 2004. 92(1): p. 154-173.
145. Abgrall, P., L.-N. Low, and N.-T. Nguyen, Fabrication of planar nanofluidic channels in a thermoplastic by hot-embossing and thermal bonding. Lab on a Chip, 2007. 7(4): p. 520-522.
146. Kettner, P., et al. New results on plasma activated bonding of imprinted polymer features for bio MEMS applications. in Journal of Physics: Conference Series. 2006. IOP Publishing.
147. Bhattacharyya, A. and C.M. Klapperich, Mechanical and chemical analysis of plasma and ultraviolet–ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab on a Chip, 2007. 7(7): p. 876-882.
148. Sun, X., et al., Rapid prototyping of poly (methyl methacrylate) microfluidic systems using solvent imprinting and bonding. Journal of Chromatography a, 2007. 1162(2): p. 162-166.
149. Ng, S., et al., Thermally activated solvent bonding of polymers. Microsystem Technologies, 2008. 14(6): p. 753-759.
150. Kim, S., J. Jeong, and J. Youn, Nanopattern insert molding. Nanotechnology, 2010. 21(20): p. 205302.
151. Su, Y.-C., J. Shah, and L. Lin, Implementation and analysis of polymeric microstructure replication by micro injection molding. Journal of Micromechanics and Microengineering, 2003. 14(3): p. 415.
152. Liou, A.-C. and R.-H. Chen, Injection molding of polymer micro-and sub-micron structures with high-aspect ratios. The International Journal of Advanced Manufacturing Technology, 2006. 28(11-12): p. 1097-1103.
153. Chen, S., et al., Preliminary study of polymer melt rheological behavior flowing through micro-channels. International Communications in Heat and Mass Transfer, 2005. 32(3-4): p. 501-510.
154. Chien, R.-D., W.-R. Jong, and S.-C. Chen, Study on rheological behavior of polymer melt flowing through micro-channels considering the wall-slip effect. Journal of Micromechanics and Microengineering, 2005. 15(8): p. 1389.
155. Lin, H.-Y., C.-H. Chang, and W.-B. Young, Experimental and analytical study on filling of nano structures in micro injection molding. International Communications in Heat and Mass Transfer, 2010. 37(10): p. 1477-1486.
156. Stormonth-Darling, J., et al., Injection moulding of ultra high aspect ratio nanostructures using coated polymer tooling. Journal of Micromechanics and Microengineering, 2014. 24(7): p. 075019.
157. Ito, H., et al., Polymer structure and properties in micro-and nanomolding process. Current Applied Physics, 2009. 9(2): p. e19-e24.
158. Yang, C., et al., Replication characterization in injection molding of microfeatures with high aspect ratio: Influence of layout and shape factor. Polymer Engineering & Science, 2011. 51(5): p. 959-968.
159. Gava, A. and G. Lucchetta, On the performance of a viscoelastic constitutive model for micro injection moulding simulations. Express Polymer Letters, 2012. 6(5).
160. Chou, S.Y. and P.R. Krauss, Imprint lithography with sub-10 nm feature size and high throughput. Microelectronic Engineering, 1997. 35(1-4): p. 237-240.
161. Chou, S.Y., P.R. Krauss, and P.J. Renstrom, Imprint of sub‐25 nm vias and trenches in polymers. Applied physics letters, 1995. 67(21): p. 3114-3116.
162. Studer, V., A. Pepin, and Y. Chen, Nanoembossing of thermoplastic polymers for microfluidic applications. Applied physics letters, 2002. 80(19): p. 3614-3616.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2020-12-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明