博碩士論文 106329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.223.23.30
姓名 王光渝(Guang-Yu Wang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 藉由形貌控制提升鉑鎳及鉑鈷奈米晶體之氧氣還原反應
(Promotion of Oxygen Reduction Reaction Performance and Durability of Shape-Controlled PtNi and PtCo Nanocrystals)
相關論文
★ 具有高活性和高穩定性鈀鐵合金氫化物應用於酸性介質析氫反應之研究★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究
★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性
★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應
★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應
★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應
★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應
★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應
★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鉑基合金催化劑被廣泛運用於低溫燃料電池的陰極端。然而因鉑 (Pt)價格高昂及稀少性,且在陰極之氧化還原反應(oxygen reduction reaction, ORR)反應不佳,使得製備高效能的陰極觸媒成為燃料電池發 展的主要挑戰之一。本研究製備了具有不同形貌的碳載鉑鎳(PtNi)及 鉑鈷(PtCo)觸媒。藉由形貌的變化,改變觸媒的平面、提升表面積、 以及增加活性位點來提昇 ORR 的性能。所製備觸媒的形貌、結構、 化學組成、表面組成、以及電化學分析分別使用高解析度穿透式電子 顯微鏡(high resolution transmission electron microscopy, HRTEM)、X 光 繞射儀(X-ray diffraction, XRD)、感應耦合電漿放射光譜分析儀 (inductively coupled plasma-optical emission spectrometer, ICP-OES)、光 電子能譜儀(X-ray photoelectron spectroscopy, XPS)、以及旋轉盤電極 (rotating disk electrode, RDE)等儀器鑑定。
本研究分為兩個部分。在第一部分討論的是金屬負載量 20 wt. % 的 PtNi 奈米晶體(NCs),藉由添加不同重量(0, 0.01, 0.02, 0.025 克)的 六羰化鎢[(W(CO)6)],以控制觸媒的形貌,分別命名為 PtNi(NCs)-0、 PtNi(NCs)-1、PtNi(NCs)-2、PtNi(NCs)-3。另外再製備金屬負載量 30 wt. % 的 PtNi 奈米顆粒,命名為 PtNi(NPs) 與其他觸媒做比較。隨著 六羰化鎢[(W(CO)6)]的增加,促進奈米立方體(100 面)的增加,使經過 5000 圈循環的加速耐久度測試(ADT)後,活性只衰退原本的 17%,提 升了穩定性。這個結果意味著表面上的(100)面在溶液中被優先溶解, 保護了催化劑,此外,奈米立方體比奈米顆粒更不易溶於酸性溶液。
第二部分製備了金屬負載量 20 wt. %的 PtCo(NCs),藉由添加不同重量(0, 0.01, 0.02, 0.025 克)的 W(CO)6,以控制觸媒的形貌,分別 命名為 PtNi(NCs)-0、PtNi(NCs)-1、PtNi(NCs)-2、PtNi(NCs)-3。另外 將金屬負載量為 30 wt. % 的商用 PtCo/C 觸媒,命名為 PtCo(NPs)與 其他觸媒做比較。支晶結構具有較大的表面積、大量活性位點以及樹 枝狀的支臂保護觸媒。結果顯示 PtCo(NCs)-1 具有良好的支晶狀結構, 且有最佳的性能表現,在 ADT 的 5000 圈循環後只衰退了原本的 2%。
摘要(英) Pt-based alloys catalysts have been widely used for the cathode of low temperature fuel cells; however, the main challenges of Pt-based catalysts are high price, scarcity, and sluggish kinetics of oxygen reduction reaction (ORR) at the cathode. Therefore, the preparation of highly effective cathode catalysts becomes one of the main challenges for the development of fuel cells. In this study, the carbon-support PtNi and PtCo catalysts with different morphologies have been prepared. Through the morphologies change, the ORR performance of the catalysts can be promoted owing to the modification of facets, and promotion of surface areas and active sites. The morphologies, structures, chemical compositions, surface compositions, and electrochemical analyses of the carbon-supported PtNi and PtCo are characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometer (ICP-OES), X-ray photoelectron spectroscopy (XPS), and rotating disc electrode (RDE), respectively.
This study is divided into two parts. In the first part, carbon-supported PtNi nanocrystals (NCs) with metal loading of 20 wt. % and different W(CO)6 additions of 0, 0.01, 0.02, 0.025 g, have been prepared and named as PtNi(NCs)-0, PtNi(NCs)-1, PtNi(NCs)-2, and PtNi(NCs)-3, respectively. Carbon-supported PtNi nanoparticles (NPs) with metal loading of 30 wt. % has also been prepared for comparison. As the W(CO)6 amount increases, the formation of nanocubes (100 facet) is also enhanced, promoting the stability during the accelerated durability test (ADT) of 5000 cycles (17 %). The results imply that the (100) facet on the surface can be preferentially dissolved, protecting the catalysts. Moreover, nanocubes are less vulnerable to dissolve in acidic media than nanoparticles.
In the second part, carbon-supported PtCo(NCs) with metal loading of 20 wt. % and with different W(CO)6 additions of 0, 0.01, 0.02, 0.025 g, have been prepared and named as PtCo(NCs)-0, PtCo(NCs)-1, PtCo(NCs)- 2, and PtCo(NCs)-3, respectively. Commercial PtCo/C catalysts with metal loading 30 wt. % named as PtCo(NPs) are used for comparison. Due to the large surface area, large numbers of active sites, and the protection of the dendrites arms, the PtCo(NCs)-1 with dendrites structure shows the best performance with the decay of 2 % during 5000 cycles of ADT.
關鍵字(中) ★ 氧氣還原反應
★ 六羰化鎢
★ 油胺
★ 油酸
★ 鉑鈷
★ 鉑鎳
★ 奈米立方體
★ 奈米支晶
關鍵字(英) ★ oxygen reduction reaction (ORR)
★ tungsten hexacarbonyl [W(CO)6]
★ oleylamine (OAm)
★ oleic-acid (OAc)
★ PtCo
★ PtNi
★ nanocubes
★ nanodendrites
論文目次 摘要............................................................................................ i Abstract.................................................................................... iii List of Figures .......................................................................... xi List of Tables ..........................................................................xiv Chapter 1 Introduction .............................................................. 1
1.1 Mechanism of oxygen reduction reaction (ORR).................. 2 1.2 The Pt 3d-transition metal (Co, Fe, or Ni) nanocrystals...... 4 1.3 Preparation of nanocubes................................................... 6 1.4 Preparation of nanodendrites ........................................... 10 1.5 Motivation and approach .................................................. 13
Chapter 2 Experimental Section ............................................. 14 2.1 Preparation of catalysts .................................................... 14 2.1.1 Preparation of PtNi/C NCs catalysts................................ 14 2.1.2 Preparation of PtCo/C NCs catalysts ............................. 17 2.2 Characterization of catalysts ............................................ 19 2.2.1 Inductively coupled plasma–optical emission spectrometer (ICP-OES) ........................................................ 19 2.2.2 X-ray diffraction (XRD) .................................................. 19 2.2.4 X-ray photoelectron spectroscopy (XPS) ...................... 21 2.2.5 Cyclic voltammetry (CV) ................................................ 21
2.2.6 Linear sweep voltammetry (LSV) .................................. 22
2.2.7 Accelerated durability test (ADT) .................................. 23
Chapter 3 Results and Discussion.......................................... 24 3.1 The structural and electrochemical characterizations of carbon- supported PtNi catalysts with different morphologies.......................................................................... 24
3.1.1 ICP-OES and HRTEM characterization ........................... 24 3.1.2 XRD characterization...................................................... 27 3.1.3 XPS characterization...................................................... 27 3.1.4 CV characterization........................................................ 31 3.1.5 LSV characterization...................................................... 35 3.1.6 ADT characterization...................................................... 35 3.1.7 Summary ....................................................................... 38
3.2 The structural and electrochemical characterizations of carbon- supported PtCo catalysts with different morphologies.......................................................................... 41 3.2.1 ICP-OES and HRTEM characterization ........................... 41 3.2.2 XRD characterization..................................................... 41 3.2.3 XPS characterization..................................................... 45 3.2.4 CV characterization....................................................... 49 3.2.5 LSV characterization..................................................... 49 3.2.6 ADT characterization..................................................... 53 3.2.7 Summary ....................................................................... 53 Chapter 4 Conclusions............................................................................ 58
References ............................................................................. 59
參考文獻 1. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B: Environ. 56 (2005) 9-35.
2. B. C. Gates, G. W. Huber, C. L. Marshall, P. N. Ross, J. Sirola, Y. Wang, MRS. Bull. 33 (2008) 429-435.
3. W. T. Hong, M. Risch, K. A. Stroerzinger, A. Grimaud, J. Suntivich, Y. S. Horn, Energy Environ. Sci. 8 (2015) 1404-1427.
4. N. A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev. 28 (2009) 2532-2542.
5. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somor, P. Yang, Nat. Mater. 6 (2007) 692-697.
6. C. Wang, H. Daimon, T. Onodera, T. Koda, S. Sun, Angew. Chem. Int. Ed. 47 (2008) 3588-3591.
7. Y. J. Wang, W. Ling, L, Wang, R. Yuan, A. Ignaszak, B. Fang, D. P. Wilkinson, Energy Environ. Sci. 11 (2018) 258-275.
8. J. Chen, B. Lim, E. P. Lee, Y. X, Nano Today 4 (2009) 81-95.
9. O. Antoine, Y. Bultel, R. Durand, J. Electroanal. Chem. 499 (2001)
85-94.
10. J. Bockris, S. Khan, Phenomenological electrode kinetics. In: Surface
electrochemistry: a molecular level approach. New York: Plenum
Press (1993) 211-409.
11. F. Jaouen, J. P. Dodelet, J. Phys. Chem. C. 113 (2009) 15422-15432.
59
12. V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. J Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Nat. Mater. 6 (2007) 241-247.
13. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic, P. N. Ross, Electrochim. Acta. 47 (2002) 3787-3798.
14. V. Stamenkovic, B. S. Mun, Karl. J. J. Mayrhofer, P. N. Ross, N. M. Marlovic, J. Rossmeicl, J. Greeley, J. L. Nørskov, Angew. Chem. Int. Ed. 45 (2006) 2897-2901.
15. E. Antolini, J. R. C. Salgado, E. R. Gonazalez, J. Power Sources 160 (2006) 957-968.
16. J. R. C. Salgado, E. Antolini, E. R. Gonzalez, Appl. Catal. B: Environ. 57 (2005) 283-290.
17. M. T. Paffett, J. G. Beery, S. Gottesfeld, J. Electrochem. Soc. 135 (1998) 1431-1436.
18. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. Disalvo, H. D. Abruña, Nat. Mater. 12(2013) 81-87.
19. P. J. Ferreira, G. J. la O’, Y. Shao-Horn, D. Morgan, R. Makharia, S. Kocha, and H. A. Gasteiger, J. Electrochem. Soc. 152 (2005) 2256- 2271.
20. Y. Lang, C. B. Murray, J. Am. Chem. Soc. 132 (2010) 7568-7569.
21. J. Zhang, H. Yang, J. Fang, S. Zou, Nano Lett. 10 (2010) 638-644.
22. V. Mazumber, Y. Lee, S. Sun, Adv. Funct. Mater. 20 (2010) 1224- 1231.
23. V. R. Stamenlovic, B. Flowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, N. M. Markovic, Science 315 (2007) 493-497.
24. Y. Yu, W. Yang, X. Sun, W. Zhu, X. Z. Li, D. J. Sellmyer, S. Sun, Nano Lett. 14 (2014) 2778-2782.
25. S. Mourdikoudis, L. M. Liz-Marzan, Chem. Mater. 25 (2013) 1465- 1476.
26. Y. Xiong, Y. Xia, Adv. Mater. 19 (2007) 3385-3391.
27. J. Zhang, K. Sun, A. Kumbhar, J. Fang, J. Phys. Chem. C. 112 (2008) 5454-5458.
28. S. Sun, C. B. Murray, J. Appl. Phys. 85 (1999) 4325-4330.
29. J. Zhang, J. Fang, J. Am. Chem. Soc. 131 (2009) 18543-18547.
30. Y. Xia, Y. Xiong, B. Lim and S. Skrabalak, Angew. Chem., Int. Ed.
48 (2009) 60-103.
31. Z. Quan, Y. Wang and J. Fang, Acc. Chem. Res. 46 (2013) 191-202.
32. J. Wu, L. Qi, H. You, A. Gross, J. Li and H. Yang, J. Am. Chem. Soc. 134(2012) 11880–11883.
33. Y. Qi, J. Wu, H. Zhang, Y. Jiang, C. Jin, M. Fu, H. Yang, D. Yang, Nanoscale 6 (2014) 7012-7018.
34. X. Huang, E. Zhu, Y. Chen, Y. Li, C. Y. Chiu, Y. Xu, Z. Lin, X. Duan and Y. Huang, Adv. Mater. 25 (2013) 2974–2979.
35. S. Lu, K. Eid, Y. Deng, J. Guo, L. Wang, H. Wang, H. Gu, J. Mater. Chem. 5 (2017) 9107- 9112.
36. X. Weng, Q. Liu, J. J. Feng, J. Yuan, A. J. Wang, J. Colloid Inter. Sci. 507 (2017) 680-687.
37. Y. W. Lee, E. T. Hwang, D. H. Kwak, K. W. Park, Catal. Sci. Technol. 6 (2016) 569–576.
38. K. Eid, H. Wang, V. Malgras, Z. A. Alothman, Y. Yamauchi and L. Wang, Chem. Asian J. 11 (2016) 1388–1393.
39. K. Eid, H. Wang, V. Malgras, Z. A. Alothman, Y. Yamauchi and L. Wang, J. Phys. Chem. C. 119 (2015) 19947–19953.
40. K. Eid, V. Malgras, P. He, K. Wang, A. Aldalbahi, S. M. Alshehri, Y. Yamauchi, L. Wang, RSC Adv. 5 (2015) 31147–31152.
41. K. Eid, H. Wang, V. Malgras, S. M. Alshehri, T. Ahamad, Y. Yamauchi, L. Wang, J. Electroanal. Chem. 779 (2015) 250–255.
42. S. Sun, G. Zhang, D. Geng, Y. Chen, R. Li, M. Cai, X. Sun, Angew. Chem. Int. Ed. 50 (2011) 422-426.
43. Y. Jang, K. H. Choi, D. Y. Chung, J. E. Lee. N. Jung, Y. E. Sung, ChumSusChem 10 (2017) 3063-3068.
44. M.A. Garcı ́a-Contreras, S.M. Ferna ń dez-Valverde, J.R. Vargas-Garcıa, M.A. Corte ś -Ja ́come, J.A. Toledo-Antonio, C. A ́ngeles-Chavez, J. Hydrogen Energy 33 (2008) 6672-6680.
45. K. Jayasayee, J. A. R. V. Veen, T. G. Magnivasagam, S. Celebi, E. J. M. Hensen, F. A. D. Bruijn. Appl. Catal. B: Environ. 111-112 (2012) 515-526.
46. X. Huang, Z. Zhao, L. Cao. Y. Chen, E. Zhu, Z. Lin, M. Li, A. Yan, A. Zettl, Y. M. Wang, Z. Duan, T. Mueller, Y. Huang, Science 348 (2015) 1230-1234.
47. S. I. Choi, R. Choi, S. W. Han, J. T. Park, Chem. Commun. 46 (2010) 4950- 4952.
48. C. Kim, J. Kim, S. Yang, H. Lee, RSC Adv. 4 (2014) 63677-63680.
49. S, I, Choi, S. U. Lee, W. Y. Kim, R. Choi, K. Hong, K. M. Nam, S. W. Han, J. T. Park, ACS Appl. Mater. Interfaces 4 (2012) 6228-6234.
50. E. Zhu, Y. Li, C. Y. Chiu, X. Huang, M. Li, Z. Zhao, Y. Liu, X. Duan, Y. Huang, Nano Research 9(2016) 149-157.
51. S. Du, Y. Lu, S. K. Malladi, Q. Xu, R. S. Wilckens, J. Mater. Chem. A. 2 (2014) 692-698.
52. R. Sakamoto, K. Omichi, T. Furuta, M. Ichikawa, J. Power Source 269 (2014) 117-123.
53. Y. Lu, L. Thia, A. Fisher, C. Y. Jung, S. C. Yi, X. Wang, Sci. China Mater. 60(2017) 1109-1120.
54. J. Ding, S. Ji, H. Wang, J. Key, D. J. L. Brett, R. Wang, J. Power Source 374 (2018) 48-54.
55. H. Wang, X. Yuan, D. Li, X. Gu, J. Colloid Inter. Sci. 384 (2012) 105- 109.
56. N. Tsubaki, S. Sun, K. Fujimoto, J. Catalysts 199 (2001) 236-246.
57. S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang, H. Gu, Nanoscale 9 (2017) 1033-1039.
58. S. I. Choi, S. Xie, M. Shao, J. H. Odell, N. Lu, H. C. Peng, L. Protsailo, S. Guerrero, J. Park, X. Xia, J. Wang, M. J. Kim, Y. Xia, Nano Lett. 13 (2013) 3420-3425.
59. Z. Chai, Y. Kuang, X. Qi, P. Wang, Y. Zhang, Z. Zhang, X. Sun, J. Mater. Chem. A. 3 (2015) 1182-1187.
60. C. Fan, G. Wang, L. Zou, J. Fang, Z. Zou, H. Yang, J. Power Sources 429 (2019) 1-8.
61. L. Y. Jiang, A. J. Wang, X. S. Li, J. Yuan, J. J. Feng, ChemElectroChem 4 (2017) 2909-2914.
62. L. Wnag, W. Gao, Z. Liu, Z. Zeng, Y. Liu, M. Giroux, M. Chi, G. Wang, J. Greeley, X. Pan, C. Wang, ACS Catal. 8(2018) 35-42.
63. Y. J. Wang, N. Zhao, B. Fang, H. Li, Z. T. Bi, H. Wang, RSC Adv. 6 (2016) 34484-34491.
64. L. Y. Jiang, X. Y. Huang, A. J. Wang, X. S. Li, J. Yuan, J. J. Feng, J. Mater. Chem. A. 5 (2017) 10554-10560.
65. Q. Jia, K. Caldwell, K. Strickland, J. M. Ziegelbauer, Z. Liu, Z. Yu, D. E. Ramaker, S. Mukerjee, ACS Catal. 5 (2015) 176-186.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2019-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明