參考文獻 |
[1]. He, H. and E.A. Garcia, Learning from imbalanced data. IEEE Transactions on Knowledge & Data Engineering, 2008(9): p. 1263-1284.
[2]. Cios, K.J. and L.A. Kurgan, Trends in Data Mining and Knowledge Discovery, in Advanced Techniques in Knowledge Discovery and Data Mining, N.R. Pal and L. Jain, Editors. 2005, Springer London: London. p. 1-26.
[3]. Mazurowski, M.A., et al., Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance. Neural networks, 2008. 21(2-3): p. 427-436.
[4]. Galar, M., et al., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2012. 42(4): p. 463-484.
[5]. Tsai, C.-F. and F.-Y. Chang, Combining instance selection for better missing value imputation. Journal of Systems and Software, 2016. 122: p. 63-71.
[6]. Ader, H.J., Advising on research methods: A consultant′s companion. 2008: Johannes van Kessel Publishing.
[7]. Tsai, C.-F., M.-L. Li, and W.-C. Lin, A class center based approach for missing value imputation. Knowledge-Based Systems, 2018. 151: p. 124-135.
[8]. Longadge, R. and S. Dongre, Class imbalance problem in data mining review. arXiv preprint arXiv:1305.1707, 2013.
[9]. Salvador, S. and P. Chan, Toward accurate dynamic time warping in linear time and space. Intelligent Data Analysis, 2007. 11(5): p. 561-580.
[10]. Müller, M., Dynamic time warping. Information retrieval for music and motion, 2007: p. 69-84.
[11]. Lin, W.-C., et al., Clustering-based undersampling in class-imbalanced data. Information Sciences, 2017. 409: p. 17-26.
[12]. Ali, A., S.M. Shamsuddin, and A.L. Ralescu, Classification with class imbalance problem: a review. Int. J. Advance Soft Compu. Appl, 2015. 7(3): p. 176-204.
[13]. Japkowicz, N. and S. Stephen, The class imbalance problem: A systematic study. Intelligent data analysis, 2002. 6(5): p. 429-449.
[14]. Das, B., N.C. Krishnan, and D.J. Cook. Handling class overlap and imbalance to detect prompt situations in smart homes. in 2013 IEEE 13th International Conference on Data Mining Workshops. 2013. IEEE.
[15]. Batista, G.E., R.C. Prati, and M.C. Monard, A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD explorations newsletter, 2004. 6(1): p. 20-29.
[16]. Kotsiantis, S., D. Kanellopoulos, and P. Pintelas, Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, 2006. 30(1): p. 25-36.
[17]. Fernández, A., et al., A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets. Fuzzy Sets and Systems, 2008. 159(18): p. 2378-2398.
[18]. Drummond, C. and R.C. Holte. C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. in Workshop on learning from imbalanced datasets II. 2003. Citeseer.
[19]. Kotsiantis, S. and P. Pintelas, Mixture of expert agents for handling imbalanced data sets. Annals of Mathematics, Computing & Teleinformatics, 2003. 1(1): p. 46-55.
[20]. Tomek, I., Two modifications of CNN. IEEE Trans. Systems, Man and Cybernetics, 1976. 6: p. 769-772.
[21]. Hart, P., The condensed nearest neighbor rule (Corresp.). IEEE transactions on information theory, 1968. 14(3): p. 515-516.
[22]. Chawla, N.V., et al., SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research, 2002. 16: p. 321-357.
[23]. Little, R.J. and D.B. Rubin, Statistical analysis with missing data. Vol. 333. 2014: John Wiley & Sons.
[24]. Scheffer, J., Dealing with missing data. 2002.
[25]. Lakshminarayan, K., S.A. Harp, and T. Samad, Imputation of missing data in industrial databases. Applied intelligence, 1999. 11(3): p. 259-275.
[26]. Silva-Ramírez, E.-L., R. Pino-Mejías, and M. López-Coello, Single imputation with multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest neighbours for monotone patterns. Applied Soft Computing, 2015. 29: p. 65-74.
[27]. Schafer, J.L., Analysis of incomplete multivariate data. 1997: Chapman and Hall/CRC.
[28]. Farhangfar, A., L. Kurgan, and J. Dy, Impact of imputation of missing values on classification error for discrete data. Pattern Recognition, 2008. 41(12): p. 3692-3705.
[29]. Cohen, P., S.G. West, and L.S. Aiken, Applied multiple regression/correlation analysis for the behavioral sciences. 2014: Psychology Press.
[30]. Farhadian, H. and H. Katibeh, New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis. International Journal of Mining Science and Technology, 2017. 27(3): p. 415-421.
[31]. Cho, S.-B., Towards creative evolutionary systems with interactive genetic algorithm. Applied Intelligence, 2002. 16(2): p. 129-138.
[32]. Troyanskaya, O., et al., Missing value estimation methods for DNA microarrays. Bioinformatics, 2001. 17(6): p. 520-525.
[33]. Keogh, E. and C.A. Ratanamahatana, Exact indexing of dynamic time warping. Knowledge and information systems, 2005. 7(3): p. 358-386.
[34]. Senin, P., Dynamic time warping algorithm review. Information and Computer Science Department University of Hawaii at Manoa Honolulu, USA, 2008. 855: p. 1-23.
[35]. Keogh, E.J. and M.J. Pazzani. Derivative dynamic time warping. in Proceedings of the 2001 SIAM international conference on data mining. 2001. SIAM.
[36]. Zhang, Z., et al., Dynamic time warping under limited warping path length. Information Sciences, 2017. 393: p. 91-107. |