博碩士論文 106521070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.224.55.63
姓名 曾琛惟(Chen-Wei Tseng)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 改良式粒子群神經網路應用於空氣品質之研究
(The Application of Air Quality Research Based on Improved Particle Swarm Neural Network)
相關論文
★ 小型化 GSM/GPRS 行動通訊模組之研究★ 語者辨識之研究
★ 應用投影法作受擾動奇異系統之強健性分析★ 利用支撐向量機模型改善對立假設特徵函數之語者確認研究
★ 結合高斯混合超級向量與微分核函數之 語者確認研究★ 敏捷移動粒子群最佳化方法
★ 改良式粒子群方法之無失真影像預測編碼應用★ 粒子群演算法應用於語者模型訓練與調適之研究
★ 粒子群演算法之語者確認系統★ 改良式梅爾倒頻譜係數混合多種語音特徵之研究
★ 利用語者特定背景模型之語者確認系統★ 智慧型遠端監控系統
★ 正向系統輸出回授之穩定度分析與控制器設計★ 混合式區間搜索粒子群演算法
★ 基於深度神經網路的手勢辨識研究★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文中,首先是提出一種改良式粒子群神經網路模型IPSONN(Improved Particle Swarm Optimization Neural Network ),藉由改變加速係數來平衡個體經驗及群體經驗,使得粒子在開始探索階段和後面收斂階段都能有較大的數值來提升搜尋能力,並利用非線性的特性來改善粒子群演算法易落入區域最佳解的缺點,然後用這改良式粒子群演算法來訓練神經網絡。另外提出一個以群體最佳解作為改良的粒子群神經網路模型PSOHBNN (Particle Swarm Optimization Hybrid Backpropagation Neural Network),改善傳統粒子群演算法的缺點,讓PSO (Particle Swarm Optimization)中的粒子能多一次跳脫區域解的機會,找到全域最佳解的位置,最後我們再將這兩方法做結合,命名為IPSOHBNN (Improved Particle Swarm Optimization Hybrid Backpropagation Neural Network) 神經網路模型。我們再將這三種演算法做為訓練前饋神經網路的學習算法來對多模態函數進行函數的適應。經由模擬的結果顯示,本文所提出的改良後的粒子群演算法在訓練神經網路時對大部份的函數都有良好的預測效果,最後對空氣品質汙染指標(PM2.5)的濃度進行預測,而從預測數據的圖表中得知本文所提出的改良後的粒子群演算法,能有效地訓練出良好的網路模型並準確地預測出PM2.5的濃度。
摘要(英) In this thesis, first propose an Improved Particle Swarm Optimization Neural Network model (IPSONN), by changing the acceleration coefficient to balance the personal and social experience, let particles at the beginning and the end of the searching stage have bigger value to enhance the searching ability, also use the nonlinear characteristics to improve the disadvantage of particle swarm algorithm which easily fall into the local optimum, then use improved PSO algorithm to train neural network. In addition, propose (PSOHBNN) model which is improved based on social experience, make particles have chance to jump out of the valley and find the global optimum. Then, we combine these two method, named Improved Particle Swarm Optimization Hybrid Backpropagation Neural Network model (IPSOHBNN), take these three algorithms as the learning algorithm for training feedforward neural network and do the function approximation for benchmark functions. In the results, the proposed PSO algorithms in training neural network have good prediction value for most of functions. Finally, these models applied to forecast the concentration of air quality pollution index (PM2.5), from the figure of test data can see the proposed PSO algorithms effectively train good network model and forecast the concentration of PM2.5 accurately.
關鍵字(中) ★ 粒子群演算法
★ 類神經網路
★ 空氣品質
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 3
第二章 計算型智慧之簡介 4
2.1 傳統粒子群演算法介紹 4
2.2 粒子群演算法基本公式與模式 5
2.3 收縮因子 6
第三章 多種變異粒子群神經網路 9
3.1 非線性加速因子 9
3.1.1 參數的設定 11
3.2 類神經網路介紹 14
3.3 前饋神經網路 14
3.4 隱藏層 15
3.4.1 隱藏層神經元及層數 16
3.4.2 神經元選取 16
3.5 BPNN 23
3.6 PSO-BPNN 28
3.7 PSONN 29
3.8 QIPSONN 32
3.9 改良式粒子群神經網路 34
3.9.1 PSOHBNN 34
3.9.2 IPSONN 37
3.9.3 IPSOHBNN 39
第四章 神經網路模型在多模態函數的模擬測試 41
4.1 目標函數 41
4.2 網路預測結果 41
4.2.1 神經網路對於函數10維、30維之擬合結果 42
第五章 神經網路模型應用於空氣品質汙染指標的預測 55
5.1 影響PM2.5濃度變數之探討與介紹 55
5.2 高雄地區空氣品質描述 59
5.3 神經網路應用於空氣品質預測 60
5.3.1 神經元選取 61
5.4 實驗模擬 62
5.5 PM2.5濃度預測結果 63
第六章 總結與未來展望 67
6.1 總結 67
6.2 未來展望 68
參考文獻 69
附錄 75
參考文獻 [1] J. Kennedy and R. C. Eberhart, “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks, Vol. IV, pp. 1942-1948, 1995.
[2] Y. Shi and R. C. Eberhart, “Particle Swarm Optimization:Development, Applications and Resource,” In Proceedings of the 2001 Congress on Evolutionary Computation, Vol. 1, pp. 81-86, 2001.
[3] N. M. Kwok, D. K. Liu, K. C. Tan and Q. P. Ha, “An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization,” IEEE Congress on Evolutionary Computation, pp. 823-830, 2006.
[4] M. Clerc and J. Kennedy, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 1, pp. 58-73, 2002.
[5] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, Vol. 5, pp. 115–133, Dec 1943.
[6] D. O. Hebb, “The Organization of Behavior A Neuropsychological Theory,” 1949.
[7] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain,” Cornell Aeronautical Laboratory, Psychological Review, Vol. 65, No. 6, pp. 386–408, 1958.
[8] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning internal representations by error propagation,” Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. I: Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA: M.I.T. Press, pp. 318-362, 1986.
[9] A. Slowik and M. Bialko, “Training of artificial neural networks using differential evolution algorithm,” Conference on Human System Interactions, May 2008.
[10] K. Khan and A. Sahai, “A Comparison of BA, GA, PSO, BP and LM for Training Feed forward Neural Networks in e-Learning Context,” I.J. Intelligent Systems and Applications, Vol. 4, June 2012.
[11] A. Suresh, K. V. Harish and N. Radhika, “Particle Swarm Optimization over Back Propagation Neural Network for Length of Stay Prediction,” Procedia Computer Science, Vol. 46, pp. 268-275, 2015.
[12] M. Clerc, “The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization,” Proceedings of the Congress on Evolutionary Computation, Vol. 3, pp. 1951−1957, 1999.
[13] A. Ratnaweera, S. K. Halgamuge and H. C. Watson, “Self-Organizing Hierarchical Particle Swarm Optimizer With Time-Varying Acceleration Coefficients,” IEEE Transactions On Evolutionary Computation, pp. 240 - 255, 2004.
[14] Y. T. Juang, S. L. Tung and H. C. Chiu, “Adaptive fuzzy particle swarm optimization for global optimization of multimodal functions,” International Journal of Information Sciences, 2010.
[15] R. Salomon, “Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions,” BioSystems, Vol. 39, No. 3, pp. 263-278, 1996.
[16] J. Moody, Ch. Darken, “Fast learning in networks of locally-tuned processing units,” Neural Computation, Vol. 1, Issue 2, pp. 281-294, Jun 1989.
[17] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biological Cybernetics, Vol. 43, Issue 1, pp. 59–69, Jan 1982.
[18] S. Grossberg, “Adaptive pattern classification and universal recoding: I. Parallel development and coding of neural feature detectors ,” Biological Cybernetics, Vol. 23, Issue 3, pp. 121–134, Sep 1976.
[19] M. Dorigo, V. Maniezzo and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 26, No. 1, pp. 29-41, Feb 1996.
[20] N. Iwasaki, K. Yasuda and G. Ueno, “Dynamic parameter tuning of particle swarm optimization,” IEEE Transactions on Electrical and Electronic Engineering, pp. 353-363, 2006.
[21] M. A. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli and M. Dorigo, “Heterogeneous particle swarm optimizers,” IEEE Congress on Evolutionary Computation, pp. 698–705, 2009.
[22] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger and S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Technical report, Nanyang Technological University, Singapore, 2005.
[23] Z. Hongbiao and Y. Genwang, “Identification of CTG Based on BP Neural Network Optimized by PSO,” Distributed Computing and Applications to Business, Engineering & Science, Dec 2012.
[24] J. Hu and X. Zeng, “A hybrid PSO-BP algorithm and its application” Sixth International Conference on Natural Computation, Aug 2010.
[25] G. Wenxian, W. Hongxiang, X. Jianxin and D. Wensheng, “PSO-BP Neural Network Model for Predicting Water Temperature in the Middle of the Yangtze River” International Conference on Intelligent Computation Technology and Automation, May 2010.
[26] K. Fukushima, “A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biological Cybernetic, Vol. 36, No. 4, pp. 193-202, 1980.
[27] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, Vol. 9, Issue 8, pp. 1735-1780, Nov 1997.
[28] Widrow and Hoff, “ADALINE (adaptive linear Neuron),” 1960.
[29] Z. A. Bashir and M. E. El-Hawary, “Applying Wavelets to Short-Term Load Forecasting Using PSO-Based Neural Networks,” IEEE Transactions on Power Systems, Vol. 24, Issue 1, pp. 20-27, Feb 2009.
[30] V. G. Gudise and G. K. Venayagamoorthy, “Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks,” Proceedings of the 2003 IEEE Swarm Intelligence Symposium, Apr 2003.
[31] C. Zhang, H. Shao, and Y. Li, “Particle swarm optimization for evolving artificial neural network,” Proceedings of 2000 IEEE International Conference On Systems, Man and Cybernetics, Vol. 4, pp. 2487-2490, Oct 2000.
[32] M. Pant, T. Radha and V. P. Singh, “A new particle swarm optimization with quadratic interpolation,” In Proceedings of IEEE International. Conference on Computational Intelligence and Multimedia Applications, pp. 55-60, 2007.
[33] F. D. Bergh and A. P. Engelbrecht, “A Study of Particle Swarm Optimization Particle Trajectories,” Information Sciences, Vol. 176, Issue 8, pp. 937–971, 2006.
[34] T. Jiang, S. Gao, D. Wang, J. Ji, Y. Todo and Z. Tang, “A neuron model with synaptic nonlinearities in a dendritic tree for liver disorders,” IEEJ Transactions On Electrical and Electronic Engineering, Vol. 12, Issue 1, pp. 105-115, Jan 2017.
[35] G. C. Fang, Y. S. Wu, J. C. Chen, C. N. Chang and T. T. Ho, “Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during 2004-2005,” Science of the Total Environment, Vol. 366, Issue 2–3, pp. 729–738, Aug 2006.
[36] Z. Klimont, S. J. Smith and J. Cofala, “The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions,” Environmental Research Letters, Vol. 8, Jan 2013.
[37] H. M. Worden, M. N. Deeter, C. Frankenberg, M. George, F. Nichitiu, J. Worden and J. X. Warner, “Decadal record of satellite carbon monoxide observations,” Atmospheric. Chemistry and Physics, Vol. 13, pp. 837-850, 2013.
[38] http://teacher2.kyu.edu.tw/nstr/er/Text-3b.pdf
[39] https://www.cwb.gov.tw/V7/knowledge/encyclopedia/ me013.htm
[40] L. A. Díaz-RoblesaJuan, C. ChowcJohnua, S. FubGregory, D. ReedbJudith, C. ChowcJohna nd G.WatsoncJuan, “A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile,” Atmospheric Environment, Vol. 42, Issue 35, pp. 8331-8340, Nov 2008.
[41] L. Pan, B. Sun and W. Wang, “City Air Quality Forecasting and Impact Factors Analysis Based on Grey Model,” Procedia Engineering, Vol. 12, pp. 74-79, 2011.
[42] Voukantsis, K. Karatzas, J. Kukkonen, T. Räsänen, A. Karppinen and M. Kolehmainen, “Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki,” Science of The Total Environment, Vol. 409, Issue 7, pp. 1266–1276, Mar 2011.
[43] X. Feng, Q. Li, Y. Zhu, J. Hou, L. Jin and J. Wang, “Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation,” Atmospheric Environment, Vol. 107, pp. 118–128, Apr 2015.
[44] J. Hooyberghs, C. Mensink, G. Dumont, F. Fierens and O. Brasseur, “A neural network forecast for daily average PM10 concentrations in Belgium,” Atmospheric Environment, Vol. 39, Issue 18, pp. 3279–3289, Jun 2005.
[45] J.B. Ordieres, E.P. Vergara, R.S. Capuz and R.E. Salazar, “Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juarez (Chihuahua),” Environmental Modelling and Software, Vol. 20, Issue 5, pp. 547–559, May 2005.
[46] P. Perez and E. Gramsch, “Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes,” Atmospheric Environment, Elsevier Ltd, Vol. 124, pp. 22–27, Jan 2016.
指導教授 莊堯棠(Yau-Tarng Juang) 審核日期 2019-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明