參考文獻 |
1. 衛生福利部. 107年國人死因統計結果. Available from: https://www.mohw.gov.tw/cp-16-48057-1.html.
2. Organization., W.H., Cerebrovascular disorders : a clinical and research classification. WHO offset publication, no. 43. 1978, Albany, N.Y.: Geneva : World Health Organization.
3. BOLD and Brain Activity. Available from: http://mriquestions.com/does-boldbrain-activity.html.
4. Lee, M.H., C.D. Smyser, and J.S. Shimony, Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol, 2013. 34(10): p. 1866-72.
5. Biswal, B., et al., Functional connectivity in the motor cortex of resting human brain using echo‐planar MRI. Magnetic resonance in medicine, 1995. 34(4): p. 537-541.
6. Soares, J.M., et al., A Hitchhiker′s Guide to Functional Magnetic Resonance Imaging. Front Neurosci, 2016. 10: p. 515.
7. Zang, Y., et al., Regional homogeneity approach to fMRI data analysis. Neuroimage, 2004. 22(1): p. 394-400.
8. Zou, Q.H., et al., An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods, 2008. 172(1): p. 137-41.
9. Wold, S., K. Esbensen, and P. Geladi, Principal component analysis. Chemometrics and intelligent laboratory systems, 1987. 2(1-3): p. 37-52.
10. Jutten, C. and J. Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture. . Signal processing, 1991. 24(1): p. 1-10.
11. Mezer, A., et al., Cluster analysis of resting-state fMRI time series. Neuroimage, 2009. 45(4): p. 1117-25.
12. Rubinov, M. and O. Sporns, Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 2010. 52(3): p. 1059-69.
13. Erdős, P. and A. Rényi, Some further statistical properties of the digits in Cantor′s series. Acta Mathematica Academiae Scientiarum Hungarica, 1959. 10(1-2): p. 21-29.
14. Watts, D.J. and S.H. Strogatz, Collective dynamics of ‘small-world’networks. nature, 1998. 393(6684): p. 440-442.
15. Barabási, A.L. and R. Albert, Emergence of scaling in random networks. science, 1999. 286(5439): p. 509-512.
16. Maslov, S. and K. Sneppen, Specificity and stability in topology of protein networks. Science, 2002. 296(5569): p. 910-3.
17. Bullmore, A.F.A.Z.E., Fundamentals of Brain Network Analysis. 2016: Academic Press.
18. Zalesky, A., A. Fornito, and E.T. Bullmore, Network-based statistic: identifying differences in brain networks. Neuroimage, 2010. 53(4): p. 1197-207.
19. Hopcroft, J. and R. Tarjan, Algorithm 447: efficient algorithms for graph manipulation. Communications of the ACM, 1973. 16(6): p. 372-378.
20. Brodmann, K., Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.
21. Tzourio-Mazoyer, N., et al., Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 2002. 15(1): p. 273-89.
22. The Anatomy Of Movement. Available from: https://brainconnection.brainhq.com/2013/03/05/the-anatomy-of-movement/.
23. Nichols-Larsen, D.S., et al., Factors influencing stroke survivors′ quality of life during subacute recovery. Stroke, 2005. 36(7): p. 1480-4.
24. L., W.-D.S., J.I. Williams, and S.H. Shapiro, Examining outcome measures in a clinical study of stroke. Stroke, 1990. 21(5): p. 731-739.
25. Duncan, P.W., et al., Measurement of motor recovery after stroke. Outcome assessment and sample size requirements. Stroke, 1992. 23(8): p. 1084-1089.
26. Coupar, F., et al., Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil, 2012. 26(4): p. 291-313.
27. Santisteban, L., et al., Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review. PLoS One, 2016. 11(5): p. e0154792.
28. Duncan, P.W., S.M. Lai, and J. Keighley, Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology, 2000. 39(5): p. 835-841.
29. Pang, M.Y., J.E. Harris, and J.J. Eng, A community-based upper-extremity group exercise program improves motor function and performance of functional activities in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil, 2006. 87(1): p. 1-9.
30. Michaelsen, S.M., et al., Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients. Stroke, 2001. 32(8): p. 1875-1883.
31. Golestani, A.M., et al., Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair, 2013. 27(2): p. 153-63.
32. Werring, D.J., et al., Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. Journal of Neurology, Neurosurgery & Psychiatry, 2000. 69(2): p. 269-272.
33. Yin, D., et al., Functional reorganization associated with outcome in hand function after stroke revealed by regional homogeneity. Neuroradiology, 2013. 55(6): p. 761-70.
34. Zhu, J., et al., Frequency-dependent changes in the regional amplitude and synchronization of resting-state functional MRI in stroke. PLoS One, 2015. 10(4): p. e0123850.
35. Park, C.H., et al., Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke, 2011. 42(5): p. 1357-62.
36. Zhu, Y., et al., Disrupted brain connectivity networks in acute ischemic stroke patients. Brain Imaging Behav, 2017. 11(2): p. 444-453.
37. Zhang, J., et al., Disrupted structural and functional connectivity networks in ischemic stroke patients. Neuroscience, 2017. 364: p. 212-225.
38. Yin, D., et al., Altered topological properties of the cortical motor-related network in patients with subcortical stroke revealed by graph theoretical analysis. Hum Brain Mapp, 2014. 35(7): p. 3343-59.
39. Wang, L., et al., Dynamic functional reorganization of the motor execution network after stroke. Brain, 2010. 133(Pt 4): p. 1224-38.
40. Straathof, M., et al., Differences in structural and functional networks between young adult and aged rat brains before and after stroke lesion simulations. Neurobiol Dis, 2019. 126: p. 23-35.
41. Lee, J., et al., Modulating Brain Connectivity by Simultaneous Dual-Mode Stimulation over Bilateral Primary Motor Cortices in Subacute Stroke Patients. Neural Plast, 2018. 2018: p. 1458061.
42. Bournonville, C., et al., Identification of a specific functional network altered in poststroke cognitive impairment. Neurology, 2018. 90(21): p. e1879-e1888.
43. Baliki, M.N., E.M. Babbitt, and L.R. Cherney, Brain network topology influences response to intensive comprehensive aphasia treatment. NeuroRehabilitation, 2018. 43(1): p. 63-76.
44. Carter, A.R., et al., Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol, 2010. 67(3): p. 365-75.
45. Carter, A.R., et al., Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke. Neurorehabil Neural Repair, 2012. 26(1): p. 7-19.
46. Au-Yeung, S.S. and C.W. Hui-Chan, Predicting recovery of dextrous hand function in acute stroke. Disabil Rehabil, 2009. 31(5): p. 394-401.
47. Prabhakaran, S., et al., Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair, 2008. 22(1): p. 64-71.
48. Shelton, F.D., B.T. Volpe, and M. Reding, Motor impairment as a predictor of functional recovery and guide to rehabilitation treatment after stroke. Neurorehabil Neural Repair, 2001. 15(3): p. 229-37.
49. Stinear, C.M., et al., The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 2012. 135(Pt 8): p. 2527-35.
50. Hoonhorst, M.H., et al., How Do Fugl-Meyer Arm Motor Scores Relate to Dexterity According to the Action Research Arm Test at 6 Months Poststroke? Arch Phys Med Rehabil, 2015. 96(10): p. 1845-9.
51. Waller, L., et al., GraphVar 2.0: A user-friendly toolbox for machine learning on functional connectivity measures. J Neurosci Methods, 2018. 308: p. 21-33.
52. Sakai, K. and K. Yamada, Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Jpn J Radiol, 2019. 37(1): p. 34-72.
53. Norman, K.A., et al., Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn Sci, 2006. 10(9): p. 424-30.
54. Zeng, L.L., et al., Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. Brain, 2012. 135(Pt 5): p. 1498-507.
55. Guo, H., et al., Machine learning classifier using abnormal brain network topological metrics in major depressive disorder. Neuroreport, 2012. 23(17): p. 1006-11.
56. Dosenbach, N.U., et al., Prediction of individual brain maturity using fMRI. Science, 2010. 329(5997): p. 1358-1361.
57. Rehme, A.K., et al., Identifying Neuroimaging Markers of Motor Disability in Acute Stroke by Machine Learning Techniques. Cereb Cortex, 2015. 25(9): p. 3046-56.
58. Rehme, A.K., et al., Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging. Hum Brain Mapp, 2015. 36(11): p. 4553-65.
59. Mohanty, R., et al., Early Findings on Functional Connectivity Correlates of Behavioral Outcomes of Brain-Computer Interface Stroke Rehabilitation Using Machine Learning. Front Neurosci, 2018. 12: p. 624.
60. Chao-Gan, Y. and Z. Yu-Feng, DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Front Syst Neurosci, 2010. 4: p. 13.
61. William D. Penny, K.J.F., John T. Ashburner, Stefan J. Kiebel, Thomas E. Nichols, Statistical Parametric Mapping: The Analysis of Functional Brain Images. 2011: Elsevier.
62. Alemán-Gómez, Y. IBASPM: toolbox for automatic parcellation of brain structures. in 12th Annual Meeting of the Organization for Human Brain Mapping. June 11-15, 2006. Florence, Italy. 2006.
63. Song, X.W., et al., REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 2011. 6(9): p. e25031.
64. Kruschwitz, J.D., et al., GraphVar: a user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. J Neurosci Methods, 2015. 245: p. 107-15.
65. van den Heuvel, M.P., et al., Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci, 2010. 30(47): p. 15915-26.
66. Regression Learner App. 2019 [cited 2020; Available from: https://www.mathworks.com/help/releases/R2019a/stats/regression-learner-app.html.
67. Choose Regression Model Options. 2019 [cited 2020; Available from: https://www.mathworks.com/help/releases/R2019a/stats/choose-regression-model-options.html?container=jshelpbrowser.
68. Farras-Permanyer, L., et al., Age-related changes in resting-state functional connectivity in older adults. Neural Regen Res, 2019. 14(9): p. 1544-1555.
69. Zalesky, A., A. Fornito, and E. Bullmore, On the use of correlation as a measure of network connectivity. Neuroimage, 2012. 60(4): p. 2096-106.
70. Farinelli, M., et al., Brain and behaviour in post-acute stroke: Reduction in seeking and posterior cingulate neuronal variability. J Clin Exp Neuropsychol, 2020. 42(6): p. 584-601.
71. Matsuoka, K., et al., Delayed atrophy in posterior cingulate cortex and apathy after stroke. Int J Geriatr Psychiatry, 2015. 30(6): p. 566-72.
72. Bullmore, E. and O. Sporns, The economy of brain network organization. Nat Rev Neurosci, 2012. 13(5): p. 336-49.
73. Liao, X., A.V. Vasilakos, and Y. He, Small-world human brain networks: Perspectives and challenges. Neurosci Biobehav Rev, 2017. 77: p. 286-300.
74. D′Esposito, M., et al., The role of prefrontal cortex in sensory memory and motor preparation: an event-related fMRI study. Neuroimage, 2000. 11(5 Pt 1): p. 400-8.
75. Fernandez-Seara, M.A., et al., Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage, 2009. 47(4): p. 1797-808.
76. Meehan, S.K., et al., Implicit sequence-specific motor learning after subcortical stroke is associated with increased prefrontal brain activations: an fMRI study. Hum Brain Mapp, 2011. 32(2): p. 290-303.
77. Gheysen, F., et al., Hippocampal contribution to early and later stages of implicit motor sequence learning. Exp Brain Res, 2010. 202(4): p. 795-807.
78. Albouy, G., et al., Hippocampus and striatum: dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 2013. 23(11): p. 985-1004.
79. van Duinen, H., et al., Effects of motor fatigue on human brain activity, an fMRI study. Neuroimage, 2007. 35(4): p. 1438-49.
80. Damoiseaux, J.S. and M.D. Greicius, Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct, 2009. 213(6): p. 525-33.
81. Hedna, V.S., et al., Hemispheric differences in ischemic stroke: is left-hemisphere stroke more common? J Clin Neurol, 2013. 9(2): p. 97-102. |