參考文獻 |
[1] J. Redmon and A. Farhadi, ′′Yolov3: an incremental improvement,′′ arXiv:1804.02767, 2018.
[2] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, ′′MobileNet V2: Inverted residuals and linear bottlenecks,′′ arXiv:1801.04381, 2019.
[3] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, Jun.23-28, 2014, pp.580-587.
[4] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders, “Selective search for object recognition,” Int. Journal of Computer Vision (IJCV), vol.104, is.2, pp.154-171, 2013.
[5] R. Girshick, "Fast R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Santiago, Chile, Dec.11-18, 2015, pp.1440-1448.
[6] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.39, is.6, pp.1137-1149, 2016.
[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Venice, Italy, Oct.22-29, 2017, pp. 2980-2988.
[8] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “ SSD: Single shot multibox detector,” in European Conf. on Computer Vision (ECCV), Amsterdam, Holland, Oct.8-16, 2016, pp.21-37.
[9] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: unified, real-time object detection," in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.779-788.
[10] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, Jul.21-26, 2017, pp.6517-6525.
[11] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, CA, Jun.21-Jul.18, vol.1, 1967, pp.281-297.
[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, Dec.3-8, 2012, pp.1097-1105.
[13] M. Lin, Q. Chen, and S. Yan, “Netwok in network,” in Proc. Int. Conf. Learn. Represent (ICLR), Banff, Canada, Apr.14-16, 2014, pp.274-278.
[14] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.7-12, 2015, pp.1-9.
[15] N. Iandola, S. Han, W. Moskewicz, K. Ashraf, W. Dally and K. Keutzer, ′′Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1mb model size,′′ arXiv: 1602.07360, 2016.
[16] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, ′′ Mobilenets: efficient convolutional neural networks for mobile vision applications,′′ arXiv:1704.04861, 2017.
[17] F. Chollet, ′′Xception: deep learning with depthwise deparable convolutions,′′ in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, Jul.22-25, 2017, pp.1800-1807.
[18] X. Zhang, X. Zhou, M. Lin, and J. Sun, ′′ShuffleNet: an extremely efficient convolutional neural network for mobile devices,′′ arXiv:1707.01083, 2017.
[19] G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger, ′′Densely Connected Convolutional Networks,′′ in Proc. IEEE Conf. on Pattern Recognition and Computer Vision (CVPR), Honolulu, Hawaii, Jul.22-25, 2017, pp.4700-4708.
[20] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, ′′ Feature pyramid networks for object detection,′′ arXiv:1612.03144, 2017.
[21] K. He, X. Zhang, S. Ren, and J. Sun, ′′Deep residual learning for image Recognition,′′ arXiv: 1512.03385, 2015.
[22] D. C. Brown, ′′Close-range camera calibration," Photogrammetric Engineering, vol.37, no.8, pp.855-866, 1971.
[23] W. Faig, "Calibration of close-range photogrammetry systems: Mathematical formulation," Photogrammetric Engineering and Remote Sensing, vol.41, no.12, pp.1479-1486, 1975.
[24] O. Faugeras, T. Luong, and S. Maybank, "Camera self-calibration: Theory and experiments," in Proc. of 2nd European Conf. on Computer Vision, Santa Margherita Ligure, Italy, May 19-22, 1992, pp.321-334.
[25] D. Gennery, "Stereo-camera calibration," in Proc. of 10th Image Understanding Workshop, Los Angeles, CA, Nov.7-8, 1979, pp.101-108.
[26] G. Wei and S. Ma, "A complete two-plane camera calibration method and experimental comparisons," in Proc. of 4th Int. Conf. on Computer Vision, Berlin, Germany, May.11-14, 1993, pp.439-446.
[27] J. Weng, P. Cohen, and M. Herniou, "Camera calibration with distortion models and accuracy evaluation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.14, no.10, pp.965-980, 1992.
[28] R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd Edition, Cambridge University Press, 2004.
[29] Z. Zhang, "A flexible new technique for camera calibration," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.22, no.11, pp.1330-1334, 2000.
[30] D. Marquardt, "An algorithm for least-squares estimation of nonlinear parameters," SIAM Journal on Applied Mathematics, vol.11, pp.431-441, 1963. |