博碩士論文 106522603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.111.3
姓名 潘思言(Setyan Pamungkas)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 以穿戴單一智慧型手錶利用多種建模策略偵測操縱方向盤之手部位置
(On Several Modeling Approach for Detecting Steering Handling Position Using One Smartwatch)
相關論文
★ 非侵入式智慧型手機使用者生物識別機制之行為變化快速適應★ 透過特徵排名剔除弱特徵以防止智慧型手機的行為生物身分認證 系統受到模擬攻擊
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一般情況下,汽車駕駛人應使用雙手控制方向盤,否則將被視為不安全的駕駛行為。基於Aditya的論文,基於Aditya的論文,我們可以通過使用empirical mode decomposition (EMD)以及 Hilbert-Huang transform (HHT)從手錶的加速度計信號中萃取振動信息來檢測這些不安全的駕駛行為。 我們提出了一種新的方法來提高單手與雙手轉向操縱位置檢測,即為透過改用RBF-SVM和individual model和grouping model的建模方法。 我們的實驗結果顯示,通用模型中雙手檢測的準確率從75%提高到89%, individual model準確率為97%, grouping model準確率為93%。
摘要(英) Normally when driving the car, the driver should hold the steering wheel with both hands. Otherwise, the action is considered as an unsafe behavior. Based on Aditya’s thesis, potentially we are able to detect those unsafe behaviors by extracting vibration information from watch’s accelerometer signal using empirical mode decomposition (EMD) and Hilbert-Huang transform (HHT). We propose new approach to improve the accuracy value of one hand versus two hand steering handling position detection by changing the classifier using SVM with RBF kernel and modeling approach using individual model and grouping model. Our experiment result shows that the accuracy is increasing from 75% to 89% for two hand detection in universal model, 97% average in individual model, and 93% average in grouping model.
關鍵字(中) ★ 分心駕駛檢測
★ 駕駛人在方向盤的擺放位置
★ 智慧手錶
★ 經驗模態分解
★ 希爾伯特-黃轉換
關鍵字(英) ★ distracted driving detection
★ driver’s hand position
★ smartwatch
★ empirical mode decomposition
★ Hilbert-Huang transform.
論文目次 Abstract ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vi
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation 3
1.3 Research Objective 3
1.4 Thesis Structure 4
CHAPTER 2 LITERATURE REVIEW 5
2.1 Driver Safety 5
2.1.1 Driver monitoring 5
2.1.2 Driver’s hand position detection 6
2.2 Smartwatch Technology 6
2.2.1 Smartwatch for activity detection 7
2.2.2 Smartwatch for driving-related activity detection 7
2.3 Hilbert Huang Transform 9
2.3.1 Empirical Mode Decomposition 10
2.3.2 Hilbert Spectral Analysis 10
2.4 Support Vector Machine 10
2.4.1 Radiant Basis Function Kernel 11
2.5 Clustering Method 11
2.5.1 K-Means Clustering 12
2.5.2 Gaussian Mixture Model Clustering 12
2.5.3 Agglomerative Hierarchical Clustering 13
CHAPTER 3 METHODOLOGY 15
3.1 System Architecture 15
3.2 Data Collection 17
3.3 Data Preprocessing 18
3.4 Feature Extraction 19
3.5 Modeling and Testing Using SVM 21
3.5.1 Tuning SVM parameter 23
CHAPTER 4 EXPERIMENT AND RESULT 25
4.1 Feature Extraction Result Analysis 25
4.2 Driver’s Data Distribution 27
4.3 Clustering Experiments 29
4.4 Performance Evaluation 30
CHAPTER 5 CONCLUSION AND FUTURE WORKS 33
5.1 Conclusion 33
5.2 Future Works 35
REFERENCES 36
參考文獻 [1] National Highway Traffic Safety Administration, “Research Note Distracted Driving in Fatal Crashes, 2017,” 2019. [Online]. Available: https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812700. [Accessed 25 May 2019].
[2] Kline, T. J., “Using Efficient Steering Techniques,”. [Online]. Available: https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/steeringtechniques.pdf. [Accessed 25 May 2019].
[3] Wathiq, O., & Ambudkar, B. D., “Optimized driver safety through driver fatigue detection methods,” Proc – International Conference on Trends in Electronics and Informatics (ICEI). 2018.
[4] Baek, J. W., Han, B. G., Kim, K. J., Chung, Y. S., & Lee, S. I., “Real-Time Drowsiness Detection Algorithm for Driver State Monitoring Systems,” International Conference on Ubiquitous and Future Networks (ICUFN). 2018.
[5] Katyal, Y., Alur, S., & Dwivedi, S., “Safe driving by detecting lane discipline and driver drowsiness,” Proc 2014, IEEE International Conference on Advanced Communication. 2015.
[6] Ding, M., Suzuki, T., & Ogasawara, T., “Estimation of driver’s posture using pressure distribution sensors in driving simulator and on-road experiment,” IEEE International Conference on Cyborg and Bionic Systems (CBS). 2017.
[7] Rahim, H. A., Yusop, Z. M., Bin, S. D., Hassan, S., & Seng, C. K., “Grasp hand approach to detect the attentiveness and fatigue of driver via vibration system,” Proc 2010, International Colloquium on Signal Processing and Its Applications. 2010.
[8] Lamkin, P., “Smartwatch Popularity Booms With Fitness Trackers On The Slide,” [Online]. Available: www.forbes.com/sites/paullamkin/2018/02/22/smartwatch-popularity-booms-with-fitness-trackers-on-the-slide/ [Accessed 26 May 2019].
[9] Silbert, S., “What Is a Smartwatch?,” [Online]. Available: https://www.lifewire.com/an-introduction-to-smart-watches-3441381 [Accessed 26 May 2019].
[10] Bi, C., Huang, J., Xing, G., Jiang, L., Liu, X., & Chen, M., “SafeWatch: A Wearable Hand Motion Tracking System for Improving Driving Safety,” IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). 2017.
[11] Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu. H.H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis” [Online]. Available: http://tec.earth.sinica.edu.tw/research/report/paper/20070711HHT.pdf [Accessed 25 May 2019].
[12] Lee, B. G., Lee, B. L., & Chung, W. Y., “Wristband-Type Driver Vigilance Monitoring System Using Smartwatch,” IEEE Sensors Journal. 2015.
[13] Lee, B. G., Lee, B. L., & Chung, W. Y., “Smartwatch-based driver alertness monitoring with wearable motion and physiological sensor,” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). 2015.
[14] G. W. Markus Klausner, "Method for detecting the position of hands on asteering wheel". March 2006.
[15] Weiss, G. M., Timko, J. L., Gallagher, C. M., Yoneda, K., & Schreiber, A. J., “Smartwatch-based activity recognition: A machine learning approach,” 3rd IEEE EMBS International Conference on Biomedical and Health Informatics (BHI). 2016.
[16] Zhu, P., Zhou, H., Cao, S., Yang, P., & Xue, S., “Control with gestures: A hand gesture recognition system using off-the-shelf smartwatch,” International Conference on Big Data Computing and Communications (BIGCOM). 2018.
[17] Yang, C. H., Chang, C. C., & Liang, D., “A novel GMM-based behavioral modeling approach for smartwatch-based driver authentication,” Sensors. 2018.
[18] Jiang, L., Lin, X., Liu, X., Bi, C., & Xing, G., “SafeDrive: Detecting Distracted Driving Behaviors Using Wrist-Worn Devices,” the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 2018.
[19] Aditya, F.H.P., Chang, C. C., & Liang, D., “Detecting Driver’s Hands Position using One Smartwatch to Improve Driving Safety,” 2018.
[20] Huang, N.E., Wu, Z., “A Review On Hilbert-Huang Transform: Method and Its Applications to Geophysical Studies,” Reviews of Geophysics, 2008.
[21] American Society of Safety Engineers, “Tips for Avoiding Distracted Driving,” [Online]. Available: https://ohsonline.com/Articles/2012/04/02/ASSE-Transportation-Group-Offers-New-Website-Tips-for-Avoiding-Distracted-Driving.aspx? [Accessed 26 May 2019].
[22] Hsu, C.W., Chang, C.C., Lin, C.J., “A Practical Guide to Support Vector Classification,” [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin [Accessed 26 May 2019].
指導教授 梁德容 博士 張欽圳 博士(Professor Deron Liang Professor Chin-Chun Chang) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明