博碩士論文 106525004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.118.162.180
姓名 陳宏霈(Hong-Pei Chen)  查詢紙本館藏   畢業系所 軟體工程研究所
論文名稱 應用於儲料槽分配問題的元優化架構
(A Meta-optimization Framework for Feeder Assignment)
相關論文
★ 坵塊分離、合併檢測系統★ 使用雲林、彰化地區航空影像建立水稻判釋模型之研究
★ 以伸展樹為基礎的Android Binder Driver★ 應用增量式學習於多種農作物判釋之研究
★ 應用分類重建學習偵測航照圖幅中的新穎坵塊★ 用於輔助工業零件辨識之尺寸估算系統
★ 使用無紋理之3D CAD工業零件模型結合長度檢測實現細粒度真實工業零件影像分類★ 一個建立在平行工作系統上的動態全球計算平台
★ 用權重參照計數演算法執行主動物件垃圾收集★ 一個動態負載平衡之最大可能性估算計算架構
★ 利用多項系統負載資訊進行動態P2P系統重組的策略研究★ 基於Hadoop系統的雲端應用程式特徵擷取與計算監測架構
★ 適用於大型動態分散式系統的調適性計算模型★ 一個提供彈性虛擬資料中心的雲端服務平台
★ 雲端彈性虛擬機房服務平台之資源控管中心★ 一個適用於自動供應雲端系統的動態調適計算架構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 置件機優化問題討論已久,但大多數的研究只能適用於特定置件機型號或簡化問
題。而且在目前工業製造領域相對封閉的狀況下,優化所需的重要參數如儲料槽位置、
儲料槽間隔大小、材料移動速度限制或相機位置等只有置件機製造商能夠取得,因此
許多置件機通常會搭配專用程式,提供操作與優化功能。然而專用程式通常會有非常
多的限制,難以對優化的目標進行調整,也無法細部調整置件動作。因此本論文提出
一元優化架構,針對置件機優化中的儲料槽分配問題,使用基因演算法將專用程式的
優化成果再優化,並以 Panasonic NPM-W2 與專用程式 NPM-DGS 為例,設計客製化適
應函數與主觀函數以達到不同的優化目標。實驗成果顯示我們的架構除了達到額外優
化目標外,還能再改善 DGS 的優化結果 2.2% 至 38% 不等。
摘要(英) Mounter optimization has been discussed for a long time, while most of these works are
aimed at certain mounter type or simplify the problem. Besides, in situation of that industrial
manufacturing is relatively self-enclosed, most of these critical arguments required in optimization such as the position of feeder slots, the interval of nozzles in beams, the limited moving
speed of each component and the position of the camera are held in the mounter manufacturer.
Therefore, many mounters come with a dedicated program that provides operation and optimization function. However, there are many limitations to the dedicated program, which makes
it hard to adjust the optimization target or modified mounting motion in detail. As a result, we
propose a meta-optimization framework that focuses on feeder assignment problem which is a
subproblem of mounter optimization. Also, we take Panasonic NPM-W2 along with dedicated
NPM-DGS software as an example to demonstrate how to design a custom fitness/subjective
function in order to fulfill different optimization targets. The experiment result shows that not
only addition optimization targets are achieved, but also improved the result of DGS by decreasing total cycle time vary from 2.2% to 38%.
關鍵字(中) ★ 儲料槽分配
★ 基因演算法
★ 元優化
關鍵字(英) ★ Feeder Assignment
★ Genetic Algorithm
★ Meta-Optimization
論文目次 摘要 v
Abstract vi
Contents vii
List of Figures ix
List of Tables x
1 Introduction 1
2 Research Background 3
2.1 Background Knowledge 3
2.1.1 Optimization of placement mounter 3
2.1.2 Genetic Algorithm 5
2.1.3 Meta-optimization 6
2.2 Related work 7
2.3 Motivation 8
3 Formal definition 10
3.1 Problem definition 10
3.2 Custom Fitness function and Subjective function 11
3.2.1 Fitness function 12
3.2.2 Subjective function 13
4 System Design 15
4.1 System Architecture 15
4.2 System Components 16
4.2.1 Job Scheduler 16
4.2.2 GA Solver 17
4.2.3 Dispatcher and agent 18
4.3 Dedicated Driver and RPA 22
4.3.1 File Inspection 23
4.3.2 Robotic Process Automation 23
5 Evaluation 24
5.1 Experiment environment 24
5.2 Experiment design and Goal 25
5.3 Experiment Result 26
6 Conclusion and Future Work 29
Reference 31
參考文獻 [1] D. Li, T. He, and S. W. Yoon, “Clustering-Based Heuristic to Optimize Nozzle and Feeder Assignments for Collect-and-Place Assembly,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 2, pp. 755–766, Apr. 2019
[2] W. Ho and P. Ji, “A hybrid genetic algorithm for component sequencing and feeder arrangement,”Journal of Intelligent Manufacturing, vol. 15, no. 3, pp. 307–315, Jun. 2004
[3] N. Van Hop and M. T. Tabucanon, “Multiple criteria approach for solving feeder assignment and assembly sequence problem in PCB assembly,” Production Planning & Control, vol. 12, no. 8, pp. 736–744, Jan. 2001
[4] M. Ayob, P. Cowling, and G. Kendall, “Optimisation for surface mount placement machines,”Tech. Rep., 2002, pp. 498–503.
[5] Y. Crama, J. Van De Klundert, and F. C. R. Spieksma, “Production planning problems in printed circuit board assembly,” Tech. Rep., 2002, pp. 339–361.
[6] T. S. Loh, S. T. Bukkapatnam, D. Medeiros, and H. Kwon, “A genetic algorithm for sequential part assignment for pcb assembly,” Computers & Industrial Engineering, vol. 40, no. 4, pp. 293–307, 2001
[7] R. Kumar and Z. Luo, “Optimizing the operation sequence of a chip placement machine using TSP model,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 26, no. 1, pp. 14–21, Jan. 2003
[8] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1, pp. 66–73, 1992
[9] R. Mercer and J. R. Sampson, “Adaptive search using a reproductive meta-plan,” Kybernetes, vol. 7, pp. 215–228, Mar. 1978.
[10] C. Neumüller, S. Wagner, G. Kronberger, and M. Affenzeller, “Parameter meta-optimization of metaheuristic optimization algorithms,” in Computer Aided Systems Theory – EUROCAST 2011, R. Moreno-Díaz, F. Pichler, and A. Quesada-Arencibia, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 367–374.
[11] L. K. MOYER and S. Gupta, “An efficient assembly sequencing heuristic for printed circuit board configurations,” Journal of Electronics Manufacturing, vol. 07, Jun. 1997
[12] K. P. Ellis, F. J. Vittes, and J. E. Kobza, “Optimizing the performance of a surface mount placement machine,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 24, no. 3, pp. 160–170, Jul. 2001
[13] H.-P. Hsu, “Solving Feeder Assignment and Component Sequencing Problems for Printed Circuit Board Assembly Using Particle Swarm Optimization,” IEEE Transactions on Automation Science and Engineering, vol. 14, no. 2, pp. 881–893, Apr. 2017
[14] D.-S. Sun, T.-E. Lee, and K.-H. Kim, “Component allocation and feeder arrangement for a dualgantry multi-head surface mounting placement tool,” International Journal of Production Economics, vol. 95, no. 2, pp. 245–264, Feb. 2005
[15] W. Ho and P. Ji, “A genetic algorithm to optimise the component placement process in PCB assembly,” The International Journal of Advanced Manufacturing Technology, vol. 26, no. 11-12, pp. 1397–1401, Nov. 2005
[16] S. Li, C. Hu, and F. Tian, “Enhancing optimal feeder assignment of the multi-head surface mounting machine using genetic algorithms,” Applied Soft Computing, vol. 8, no. 1, pp. 522–529, Jan. 2008
[17] T.-H. Park and N. Kim, “A Dynamic Programming Approach to PCB Assembly Optimization for Surface Mounters,” International Journal of Control, Automation and Systems, vol. 5, 2007.
[18] H. Esbensen and P. Mazumder, “Saga : A unification of the genetic algorithm with simulated annealing and its application to macro-cell placement,” in Proceedings of 7th International Conference on VLSI Design, Jan. 1994, pp. 211–214.
[19] M. M. Mahon. (). Pywinauto - pywinauto. Accessed: 2019-05-07, [Online]. Available: https://pywinauto.github.io/.
指導教授 王尉任(Wei-Jen Wang) 審核日期 2019-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明