參考文獻 |
1. Fjær, E.L.; Landet, E.R.; McNamara, C.L.; Eikemo, T.A. The use of complementary and alternative
medicine (CAM) in Europe. BMC complementary medicine and therapies 2020, 20, 1-9.
2. Herman, P.M.; Craig, B.M.; Caspi, O. Is complementary and alternative medicine (CAM) cost-effective?
A systematic review. BMC Complementary and alternative medicine 2005, 5, 1-15.
3. Huang, C.-W.; Tran, D.N.H.; Li, T.-F.; Sasaki, Y.; Lee, J.A.; Lee, M.S.; Arai, I.; Motoo, Y.; Yukawa, K.;
Tsutani, K. The utilization of complementary and alternative medicine in Taiwan: an internet survey
using an adapted version of the international questionnaire (I-CAM-Q). Journal of the Chinese Medical
Association 2019, 82, 665-671.
4. Jensen, B. Iridology simplified; Book Publishing Company: 2012.
5. Ma, L.; Li, N. Texture feature extraction and classification for iris diagnosis. In Proceedings of
International Conference on Medical Biometrics; pp. 168-175.
6. Tobore, I.; Li, J.; Yuhang, L.; Al-Handarish, Y.; Kandwal, A.; Nie, Z.; Wang, L. Deep learning
intervention for health care challenges: some biomedical domain considerations. JMIR mHealth and
uHealth 2019, 7, e11966.
7. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proceedings of the IEEE 1998, 86, 2278-2324.
8. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In
Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
3431-3440.
9. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of Proceedings of the IEEE conference on computer vision and
pattern recognition; pp. 580-587.
10. Sampath, V.; Maurtua, I.; Martín, J.J.A.; Gutierrez, A. A survey on generative adversarial networks for
imbalance problems in computer vision tasks. Journal of big Data 2021, 8, 1-59.
11. Ma, L.; Zhang, D.; Li, N.; Cai, Y.; Zuo, W.; Wang, K.J.I.j.o.b.; informatics, h. Iris-based medical analysis
by geometric deformation features. 2012, 17, 223-231.
12. DEMEA, A.L.S.J.A.T.N., Electronics; Telecommunications. Medical Diagnosis System based on iris
analysis. 2009, 50.
13. PUSHPALATHA, M.; MUTHURANI, K. An Labeled Observations Iridology For Diagnosing Kidney
Disease.
14. Othman, Z.; Prabuwono, A.S. Preliminary study on iris recognition system: Tissues of body organs in
iridology. In Proceedings of 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences
(IECBES); pp. 115-119.
15. Hussain, T.; Haider, A.; Muhammad, A.M.; Agha, A.; Khan, B.; Rashid, F.; Raza, M.S.; Din, M.; Khan,
M.; Ullah, S. An Iris based Lungs Pre-diagnostic System. In Proceedings of 2019 2nd International
Conference on Computing, Mathematics and Engineering Technologies (iCoMET); pp. 1-5.
16. Hernandez, F.; Vega, R.; Tapia, F.; Morocho, D.; Fuertes, W. Early detection of Alzheimer′s using digital
image processing through iridology, an alternative method. In Proceedings of 2018 13th Iberian
Conference on Information Systems and Technologies (CISTI); pp. 1-7.
17. Commons, W. File:Three Main Layers of the Eye.png --- Wikimedia Commons{,} the free media
repository. Availabe online:
https://commons.wikimedia.org/w/index.php?title=File:Three_Main_Layers_of_the_Eye.png&oldid=3
71960677 (accessed on 20 February 2020).
18. Lim, Y.-W.; Park, Y.-B.; Park, Y.-J.J.E.J.o.I.M. A longitudinal study of iris parameters and their
relationships with temperament characteristics. 2016, 8, 991-1000.
19. Holl, R.M.J.A.h.p. Iridology: another look. 1999, 5, 35-43.
20. Um, J.-Y.; An, N.-H.; Yang, G.-B.; Lee, G.-M.; Cho, J.-J.; Cho, J.-W.; Hwang, W.-J.; Chae, H.-J.; Kim, H.-
R.; Hong, S.-H.J.T.A.j.o.C.m. Novel approach of molecular genetic understanding of iridology:
relationship between iris constitution and angiotensin converting enzyme gene polymorphism. 2005,
33, 501-505.
21. Lodin, A.; Demea, S. Design of an iris-based medical diagnosis system. In Proceedings of 2009
International Symposium on Signals, Circuits and Systems; pp. 1-4.
22. Münstedt, K.; El-Safadi, S.; Brück, F.; Zygmunt, M.; Hackethal, A.; Tinneberg, H.-R.J.J.o.A.; Medicine,
C. Can iridology detect susceptibility to cancer? A prospective case-controlled study. 2005, 11, 515-519.
23. Hussein, S.E.; Hassan, O.A.; Granat, M.H.J.B.S.P.; Control. Assessment of the potential iridology for
diagnosing kidney disease using wavelet analysis and neural networks. 2013, 8, 534-541.
78
24. Ernst, E.J.B.J.G.P. Complementary/alternative medicine: engulfed by postmodernism, anti-science and
regressive thinking. 2009, 59, 298-301.
25. Ernst, E.J.A.o.O. Iridology: not useful and potentially harmful. 2000, 118, 120-121.
26. Zhao, C.; Li, G.-Z.; Wang, C.; Niu, J. Advances in patient classification for traditional Chinese medicine:
a machine learning perspective. Evidence-Based Complementary and Alternative Medicine 2015, 2015.
27. Chung, S.; Cha, S.; Lee, S.-Y.; Park, J.-H.; Lee, S.J.I.m.r. The five elements of the cell. 2017, 6, 452-456.
28. Worsley, J.R. Classical five-element acupuncture: the five elements and the officials; JR and JB Worsley: 1998.
29. Irisology talk. Availabe online:
https://www.youtube.com/watch?v=oogtGRKxU2o&list=PL8OTrtNdZxX31ArC5iMzSYaikP2POSqYF
(accessed on 21 April 2020).
30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. In Proceedings of Advances in neural information processing systems; pp. 1097-1105.
31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of
Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 770-778.
32. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for
computer vision. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
recognition; pp. 2818-2826.
33. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
4700-4708.
34. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image
database. In Proceedings of 2009 IEEE conference on computer vision and pattern recognition; pp. 248-
255.
35. Triwijayanti, A.; Suwastio, H.; Damayanti, R.J.T.-J.P.d.P.T., Kendali, Komputer, Elektrik, dan
Elektronika. Lung disorders detection based on irises image using computational intelligent art. 2003,
8.
36. Adelina, D.C.; Sigit, R.; Harsono, T.; Rochmad, M. Identification of diabetes in pancreatic organs using
iridology. In Proceedings of 2017 International Electronics Symposium on Knowledge Creation and
Intelligent Computing (IES-KCIC); pp. 114-119.
37. Permatasari, L.I.; Novianty, A.; Purboyo, T.W. Heart disorder detection based on computerized
iridology using support vector machine. In Proceedings of 2016 International Conference on Control,
Electronics, Renewable Energy and Communications (ICCEREC); pp. 157-161.
38. Herlambang, R.A.N.P.; Isnanto, R.R.; Ajub, A.Z. Application of liver disease detection using iridology
with back-propagation neural network. In Proceedings of 2015 2nd International Conference on
Information Technology, Computer, and Electrical Engineering (ICITACEE); pp. 123-127.
39. Miranda, J.D.; Salinas, S.A. Computational Measuring Approach for the Identification of Probable
Intestinal System Pathologies through the Human Iris Parameters. In Proceedings of 2019 XXII
Symposium on Image, Signal Processing and Artificial Vision (STSIVA); pp. 1-5.
40. Tang, H.; Huang, W.; Ma, J.; Liu, L.J.C.m. SWOT analysis and revelation in traditional Chinese medicine
internationalization. 2018, 13, 5.
41. Huan, E.-Y.; Wen, G.-H.; Zhang, S.-J.; Li, D.-Y.; Hu, Y.; Chang, T.-Y.; Wang, Q.; Huang, B.-L. Deep
convolutional neural networks for classifying body constitution based on face image. Computational and
mathematical methods in medicine 2017, 2017.
42. Wang, K.-C. THE FIVE ELEMENTS THEORY IN BUSINESS RESEARCH.
43. Li, Y.-H.; Huang, P.-J.; Juan, Y.J.M.I.S. An Efficient and Robust Iris Segmentation Algorithm Using Deep
Learning. 2019, 2019.
44. Institute of Automation, Chinese Academy of Science: CASIA Iris Image Database. . Availabe online:
http://www.cbsr.ia.ac.cn/china/Iris%20Databases%20CH.asp (accessed on 19 October 2021).
45. Alpaydin, E. Introduction to machine learning; MIT press: 2020.
46. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,
Y. Generative adversarial networks. arXiv preprint arXiv:1406.2661 2014.
47. Arjovsky, M.; Bottou, L. Towards principled methods for training generative adversarial networks.
arXiv preprint arXiv:1701.04862 2017.
48. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of
International conference on machine learning; pp. 214-223.
49. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein
gans. arXiv preprint arXiv:1704.00028 2017.
79
50. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. 2015.
51. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance
in face verification. In Proceedings of Proceedings of the IEEE conference on computer vision and
pattern recognition; pp. 1701-1708.
52. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and
clustering. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
recognition; pp. 815-823.
53. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016; pp. 770-778.
54. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 2015, 39,
doi:10.1109/TPAMI.2016.2577031.
55. Bell, S.; Zitnick, C.; Bala, K.; Girshick, R. Inside-Outside Net: Detecting Objects in Context with Skip
Pooling and Recurrent Neural Networks. 2015.
56. Sreeja, N. A weighted pattern matching approach for classification of imbalanced data with a fireworksbased algorithm for feature selection. Connection Science 2019, 31, 143-168.
57. Wang, S.; Minku, L.L.; Chawla, N.; Yao, X. Learning from data streams and class imbalance. Connection
Science 2019, 31, 103-104, doi:10.1080/09540091.2019.1572975.
58. Khan, I.K.; Yogesh, M. An Analysis on Iris Segmentation Method for Non Ideal Iris Images like off-axis
angle and distance acquired. The International Journal Of Engineering And Science (IJES) 2014, 3, 1-6.
59. Kumar, S.; Lamba, V.K.; Jangra, S. Existing and Emerging Covariates of Iris Recognition. 2019.
60. Wu, Z.; Gao, Y.; Li, L.; Xue, J.; Li, Y. Semantic segmentation of high-resolution remote sensing images
using fully convolutional network with adaptive threshold. Connection Science 2019, 31, 169-184.
61. Devi, D.; Biswas, S.K.; Purkayastha, B. Learning in presence of class imbalance and class overlapping
by using one-class SVM and undersampling technique. Connection Science 2019, 31, 105-142.
62. Sun, J.; Lang, J.; Fujita, H.; Li, H. Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree
ensemble based on SMOTE and bagging with differentiated sampling rates. Information Sciences 2018,
425, 76-91.
63. Wei, H.G.T. Logistic regression for imbalanced learning based on clustering. International Journal of
Computational Science and Engineering 2019, 18, 54-64.
64. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. Keel data-mining
software tool: data set repository, integration of algorithms and experimental analysis framework.
Journal of Multiple-Valued Logic & Soft Computing 2011, 17.
65. Wu, Q.; Zhu, B.; Yong, B.; Wei, Y.; Jiang, X.; Zhou, R.; Zhou, Q. ClothGAN: generation of fashionable
Dunhuang clothes using generative adversarial networks. Connection Science 2020,
10.1080/09540091.2020.1822780, 1-18, doi:10.1080/09540091.2020.1822780.
66. Douzas, G.; Bacao, F. Effective data generation for imbalanced learning using conditional generative
adversarial networks. Expert Systems with applications 2018, 91, 464-471.
67. Zheng, M.; Li, T.; Zhu, R.; Tang, Y.; Tang, M.; Lin, L.; Ma, Z. Conditional Wasserstein generative
adversarial network-gradient penalty-based approach to alleviating imbalanced data classification.
Information Sciences 2020, 512, 1009-1023.
68. Minaee, S.; Abdolrashidi, A. Iris-GAN: Learning to Generate Realistic Iris Images Using Convolutional GAN;
2018.
69. Yadav, S.; Chen, C.; Ross, A. Synthesizing Iris Images Using RaSGAN With Application in Presentation
Attack Detection. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 16-17 June 2019; pp. 2422-2430.
70. LeCun, Y.; Cortes, C.; Burges, C. MNIST handwritten digit database. Florham Park, NJ, USA: 2010.
71. Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Transactions on
Information theory 2003, 49, 1858-1860.
72. Huszár, F. How (not) to train your generative model: Scheduled sampling, likelihood, adversary? arXiv
preprint arXiv:1511.05101 2015.
73. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 2014.
74. Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings
of International conference on machine learning; pp. 2642-2651.
75. Guldas, S. Efficient Learning on Imbalanced Image Set. International Journal of Computer Sciences and
Engineering 2018, 6, 121-126, doi:10.26438/ijcse/v6i10.121126.
80
76. Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face
recognition. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
recognition; pp. 212-220.
77. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition.
In Proceedings of European conference on computer vision; pp. 499-515.
78. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for
training gans. arXiv preprint arXiv:1606.03498 2016.
79. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale
update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 2017.
80. Nguyen, K.; Fookes, C.; Sridharan, S.; Tistarelli, M.; Nixon, M. Super-resolution for biometrics: A
comprehensive survey. Pattern Recognition 2018, 78, 23-42.
81. Li, Y.-h.; Savvides, M. Iris Super-Resolution. 2009.
82. Boucher, A.; Kyriakidis, P.C.; Cronkite-Ratcliff, C. Geostatistical solutions for super-resolution land
cover mapping. IEEE Transactions on Geoscience and Remote Sensing 2007, 46, 272-283.
83. Zhang, H.; Zhang, L.; Shen, H. A super-resolution reconstruction algorithm for hyperspectral images.
Signal Processing 2012, 92, 2082-2096.
84. Zhu, X.X.; Bamler, R. Demonstration of super-resolution for tomographic SAR imaging in urban
environment. IEEE Transactions on Geoscience and Remote Sensing 2011, 50, 3150-3157.
85. Milanfar, P. Super-resolution imaging; CRC press: 2017.
86. Greenspan, H. Super-resolution in medical imaging. The computer journal 2009, 52, 43-63.
87. Huang, Y.; Shao, L.; Frangi, A.F. Simultaneous super-resolution and cross-modality synthesis of 3D
medical images using weakly-supervised joint convolutional sparse coding. In Proceedings of
Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 6070-6079.
88. Capel, D.; Zisserman, A. Automated mosaicing with super-resolution zoom. In Proceedings of
Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(Cat. No. 98CB36231); pp. 885-891.
89. Krämer, P.; Benois-Pineau, J.; Domenger, J.-P. Local object-based super-resolution mosaicing from lowresolution video. Signal processing 2011, 91, 1771-1780.
90. Gunturk, B.K.; Altunbasak, Y.; Mersereau, R.M. Super-resolution reconstruction of compressed video
using transform-domain statistics. IEEE Transactions on Image Processing 2004, 13, 33-43.
91. Li, K.; Zhu, Y.; Yang, J.; Jiang, J. Video super-resolution using an adaptive superpixel-guided autoregressive model. Pattern Recognition 2016, 51, 59-71.
92. Caballero, J.; Ledig, C.; Aitken, A.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-time video superresolution with spatio-temporal networks and motion compensation. In Proceedings of Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition; pp. 4778-4787.
93. Nasrollahi, K.; Escalera, S.; Rasti, P.; Anbarjafari, G.; Baro, X.; Escalante, H.J.; Moeslund, T.B. Deep
learning based super-resolution for improved action recognition. In Proceedings of 2015 International
Conference on Image Processing Theory, Tools and Applications (IPTA); pp. 67-72.
94. Ryoo, M.S.; Rothrock, B.; Fleming, C.; Yang, H.J. Privacy-preserving human activity recognition from
extreme low resolution. In Proceedings of Thirty-First AAAI Conference on Artificial Intelligence.
95. Hong, C.; Yu, J.; Wan, J.; Tao, D.; Wang, M. Multimodal deep autoencoder for human pose recovery.
IEEE Transactions on Image Processing 2015, 24, 5659-5670.
96. Hong, C.; Yu, J.; Tao, D.; Wang, M. Image-based three-dimensional human pose recovery by multiview
locality-sensitive sparse retrieval. IEEE Transactions on Industrial Electronics 2014, 62, 3742-3751.
97. Baker, S.; Kanade, T. Limits on super-resolution and how to break them. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2002, 24, 1167-1183.
98. Akae, N.; Makihara, Y.; Yagi, Y. Gait recognition using periodic temporal super resolution for low
frame-rate videos. In Proceedings of 2011 international joint conference on biometrics (IJCB); pp. 1-7.
99. Nguyen, K.; Sridharan, S.; Denman, S.; Fookes, C. Feature-domain super-resolution framework for
Gabor-based face and iris recognition. In Proceedings of 2012 IEEE Conference on Computer Vision
and Pattern Recognition; pp. 2642-2649.
100. Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.-H.; Liao, Q. Deep learning for single image superresolution: A brief review. IEEE Transactions on Multimedia 2019, 21, 3106-3121.
101. Zhang, Y.; An, M. Deep learning-and transfer learning-based super resolution reconstruction from
single medical image. Journal of healthcare engineering 2017, 2017.
102. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,
Y. Generative adversarial nets. Advances in neural information processing systems 2014, 27.
81
103. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual
channel attention networks. In Proceedings of Proceedings of the European conference on computer
vision (ECCV); pp. 286-301.
104. Dai, T.; Zha, H.; Jiang, Y.; Xia, S.-T. Image super-resolution via residual block attention networks. In
Proceedings of Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops;
pp. 0-0.
105. Kim, D.; Kim, M.; Kwon, G.; Kim, D.-S. Progressive face super-resolution via attention to facial
landmark. arXiv preprint arXiv:1908.08239 2019.
106. Li, Q.; Yu, Z.; Wang, Y.; Zheng, H. TumorGAN: A multi-modal data augmentation framework for brain
tumor segmentation. Sensors 2020, 20, 4203.
107. Huang, C.-E.; Chang, C.-C.; Li, Y.-H. Mask Attention-SRGAN for Mobile Sensing Networks. Sensors
2021, 21, 5973.
108. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution.
In Proceedings of European conference on computer vision; pp. 184-199.
109. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks.
In Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
1646-1654.
110. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz,
J.; Wang, Z. Photo-realistic single image super-resolution using a generative adversarial network. In
Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
4681-4690.
111. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In
Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
2472-2481.
112. Lai, W.-S.; Huang, J.-B.; Ahuja, N.; Yang, M.-H. Deep laplacian pyramid networks for fast and accurate
super-resolution. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
recognition; pp. 624-632.
113. Tai, Y.; Yang, J.; Liu, X.; Xu, C. Memnet: A persistent memory network for image restoration. In
Proceedings of Proceedings of the IEEE international conference on computer vision; pp. 4539-4547.
114. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In
Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
1637-1645.
115. Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of
Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 3147-3155.
116. Haris, M.; Shakhnarovich, G.; Ukita, N. Deep back-projection networks for super-resolution. In
Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
1664-1673.
117. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings
of Proceedings of the IEEE international conference on computer vision; pp. 4799-4807.
118. Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. Enhancenet: Single image super-resolution through automated
texture synthesis. In Proceedings of Proceedings of the IEEE International Conference on Computer
Vision; pp. 4491-4500.
119. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556 2014.
120. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image superresolution. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
recognition workshops; pp. 136-144.
121. Rakotonirina, N.C.; Rasoanaivo, A. ESRGAN+: Further improving enhanced super-resolution
generative adversarial network. In Proceedings of ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP); pp. 3637-3641.
122. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of Proceedings of the IEEE
conference on computer vision and pattern recognition; pp. 7132-7141.
123. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network
for image classification. In Proceedings of Proceedings of the IEEE conference on computer vision and
pattern recognition; pp. 3156-3164.
82
124. Li, K.; Wu, Z.; Peng, K.-C.; Ernst, J.; Fu, Y. Tell me where to look: Guided attention inference network.
In Proceedings of Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition;
pp. 9215-9223.
125. Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.; Huang, Y.; Wang, L.; Huang, C.; Xu, W. Look and
think twice: Capturing top-down visual attention with feedback convolutional neural networks. In
Proceedings of Proceedings of the IEEE international conference on computer vision; pp. 2956-2964.
126. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Advances in neural information
processing systems 2015, 28, 2017-2025.
127. Bluche, T. Joint line segmentation and transcription for end-to-end handwritten paragraph recognition.
Advances in Neural Information Processing Systems 2016, 29, 838-846.
128. Miech, A.; Laptev, I.; Sivic, J. Learnable pooling with context gating for video classification. arXiv
preprint arXiv:1706.06905 2017.
129. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of
Proceedings of the European conference on computer vision (ECCV); pp. 3-19.
130. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of
Proceedings of the IEEE international conference on computer vision; pp. 3730-3738.
131. Large-scale CelebFaces Attributes (CelebA) Dataset. Availabe online:
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed on 19 October 2021).
132. King, D.E. Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research 2009, 10, 1755-
1758. |