博碩士論文 106622601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.222.91.173
姓名 郭法雅(Qori Fajar Hermawan)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 Seismic Activity along the Santorini-Amorgos Zone Based on Data from Temporary and Permanent Seismic Networks
(Seismic Activity along the Santorini-Amorgos Zone Based on Data from Temporary and Permanent Seismic Networks)
相關論文
★ Crustal Seismicity of the eastern Hellenic volcanic arc: Its relationship with active faulting and volcanic centers
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
聖多里尼阿莫爾戈斯島區位於基克拉迪群島群島,位於希臘火山弧的中心。由於板塊回滾與重力擴張相結合,該區域受到愛琴海域的延伸的影響。火山活動和擴展,聖托里尼島 - 阿莫爾戈斯地區的地震活動很高,產生了兩次大地震,並於隨後發生了海嘯。1956年7月9日,地震發生在阿莫爾戈斯島的東南部,測量到的地面波震度分別是7.4和7.2。此研究利用現代地震學方法以更了解聖托里尼 - 阿莫爾戈斯地區的地震活動。我們使用來自兩個臨時(CYCNET和EGELADOS)和永久(HUSN)地震測震網數據。 CYCNET的數據記錄期間為2002年9月至2004年7月,EGELADOS為2005年10月至2007年3月。HUSN的數據期為2011年1月至2018年12月。其間在聖多里尼阿莫爾戈斯島地區共記錄到1868次地震。這些地震的絕對位置是通過使用Non Lin Loc以非線性的計算方法獲得的。
愛琴海東南部的一維地殼速度模型用於地震定位。我們使用執行雙差算法的hypoDD重新定位了其中83.4%的地震(1558次地震)。相對位置的水平誤差為0.03-0.05 km,垂直誤差為0.05 km。重新定位的地震集中在Kolumbo火山礁和Santorini-Anafi斷層帶,其中包括Anydros盆地。489次重新定位的地震發生在Kolumbo火山礁,其中大部分集中在Kolumbo海底火山下3-15公里的深處。聖托里尼 - 阿納菲斷裂帶的重新定位地震發生在聖托里尼 - 阿納菲斷層帶的西南 - 東北方向。我們根據使用ISOLA軟件包的雅典國家地震目錄,計算了部分規模超過3.5的地震的矩張量解。大多數力矩張量解在西南 - 東北方向顯示出傾斜的正常斷裂機制。其中一個具有顯著的補償線性矢量偶極子(CLVD)分量,可能是由該區域的破裂複雜性引起的。在Kolumbo火山下發生的地震的矩張量解決方案具有顯著的雙偶合(DC)分量,表示可能與Kameni-Kolumbo區域相連的正常斷層。

關鍵詞:聖托里尼阿莫爾戈斯地區,地震活動,震源機制
摘要(英) ABSTRACT


The Santorini-Amorgos zone is located in the Cyclades islands group which is in the center of the Hellenic volcanic arc. This zone is affected by the extension in the Aegean domain as the result of slab rollback combined with gravitational spreading. Due to volcanic activity and extension, the Santorini-Amorgos zone has high seismic activity that has produced two large earthquakes which were followed by a tsunami. These earthquakes occurred in the southeastern part of the island of Amorgos on 9 July 1956 and had 7.4 and 7.2 surface wave magnitude. We utilized modern seismological methods to understand better the seismic activity in the Santorini-Amorgos zone. We used data from temporary (CYCNET and EGELADOS) and permanent (HUSN) seismic networks. The data period of CYCNET is from September 2002 to July 2004, and EGELADOS is from October 2005 to March 2007. The data period of HUSN is from January 2011 to December 2018. We found 1868 earthquakes which occurred in the Santorini-Amorgos zone. The absolute location of these earthquakes was obtained by using NonLinLoc which implements a non-linear approach of earthquake location calculation. The one-dimensional crustal velocity model of the southeast Aegean produced better absolute locations for these earthquakes than the model of the Santorini-Kolumbo volcanic zone. We relocated 83.4% of the earthquakes (1558 earthquakes) using hypoDD which implements the double-difference algorithm. The horizontal error of relative location is 0.03-0.05 km, and the vertical error is 0.05 km. The relocated earthquakes concentrated in Kolumbo volcanic reef and the Santorini-Anafi fault zone, including the Anydros basin. The 489 relocated earthquakes occurred in Kolumbo volcanic reef, and most of them concentrated at depths 3-15 km beneath Kolumbo submarine volcano. The relocated earthquakes in the Santorini-Anafi fault zone occurred in a southwest-northeast direction along the horst of Santorini-Anafi fault. We calculated the moment tensor solutions of the earthquakes which had local magnitude above 3.5 based on the National Observatory of Athens earthquake catalog using the ISOLA package. Most of the moment tensor solutions showed oblique normal faulting mechanism striking in the southwest-northeast direction. One of them had a significant compensated linear vector dipole (CLVD) component probably caused by rupture complexity in this zone. The moment tensor solution of an earthquake that occurred beneath Kolumbo volcano had a significant double-couple (DC) component representing a normal fault that probably links with the Kameni-Kolumbo zone.
關鍵字(中) ★ 聖托里尼阿莫爾戈斯地區
★ 地震活動
★ 震源機制
關鍵字(英) ★ Santorini-Amorgos Zone
★ Seismic activity
★ Focal mechanism
論文目次 TABLE OF CONTENTS

摘要 i
ABSTRACT ii
ACKNOWLEDGMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1
INTRODUCTION 1
1.1 Tectonic setting of the Santorini-Amorgos zone 1
1.2 Seismicity in the Santorini-Amorgos zone 3
1.3 Aims and structure of this thesis 4
CHAPTER 2
DATA DESCRIPTION 9
2.1 The Cyclades seismic network 9
2.2 The EGELADOS seismic network 10
2.3 The Hellenic unified seismic network 10
2.4 Data pre-processing 11
CHAPTER 3
EARTHQUAKE LOCATIONS AND MOMENT TENSOR INVERSIONS 16
3.1 Absolute location 16
3.1.1 Method 16
3.1.2 Results 18
3.2 Relative location 19
3.2.1 Method 19
3.2.2 Results 22
3.3 Moment tensor inversion 23
3.3.1 Method 23
3.3.2 Results 26
CHAPTER 4
CONCLUSIONS 38
REFERENCES 39
Appendix A 45
Appendix B 50
參考文獻 Ambraseys, N., 1960. The seismic sea wave of July 1956 in the Greek Archipelago, J. Geophys. Res., 65, 1257–1265.
Avigad, D., Ziv, A., and Garfunkel, Z., 2001. Ductile and brittle shortening, extension‐parallel folds and maintenance of crustal thickness in the central Aegean (Cyclades, Greece), Tectonics, 20( 2), 277– 287. https://doi.org/10.1029/2000TC001190.
Bohnhoff, M., Rische, M., Meier, T., Becker, D., Stavrakakis, G., Harjes, H.P., 2006. Microseismic activity in the Hellenic Volcanic Arc, Greece, with emphasis on the seismotectonic setting of the Santorini–Amorgos zone. Tectonophysics 423 (1),17–33. https://doi.org/10.1016/j.tecto.2006.03.024
Bohnhoff, M., Rische, M., Meier, T., Endrun, B., Harjes, H.-P., Stavrakakis, G., 2004. A temporary seismic network on the Cyclades (Aegean Sea, Greece). Seismol. Res. Lett. 75/3, 352–357. https://doi.org/10.1785/gssrl.75.3.352.
Bouchon, M., 1981. A simple method to calculate Green’s functions for elastic layered media, Bull. Seismol. Soc. Am. 71, 959–971.
Brüstle, A., 2012. Seismicity of the eastern Hellenic Subduction Zone. Ph. D. thesis, Fakultät für Geowissenschaften, Ruhr-Universität, Bochum.
Brüstle, A., Friederich, W., Meier, T., Gross, C., 2014. Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue seismograms. Solid Earth 5:1027–1044. http://dx.doi.org/10.5194/se-5-1027-2014.
Caputo R., and Pavlides S., 2013. The Greek Database of Seismogenic Sources (GreDaSS), Version 2.0.0: A compilation of potential seismogenic sources (Mw>5.5) in the Aegean region. https://doi.org/10.15160/unife/gredass/0200
Comninakis, P. and Papazachos, B., 1986. A catalogue of earthquakes in Greece and the surrounding area for the period 1901–1985, Univ. Thessaloniki Geophys. Lab. Publ.
Coutant, O., 1989. Program of numerical simulation AXITRA, Tech. Rep., LGIT, Grenoble, France (in French).
Dimitriadis, I., Karagianni, E., Panagiotopoulos, D., Papazachos, C., Hatzidimitriou, P., Bohnhoff, M., Rische, M., Meier, T., 2009. Seismicity and active tectonics at Kolumbo Reef (Aegean Sea, Greece): monitoring an active volcano at Santorini Volcanic Center using a temporary seismic network. Tectonophysics 465, 136–149. https://doi.org/10.1016/j.tecto.2008.11.005.
Dimitriadis, I.M., Panagiotopoulos, D.G., Papazachos, C.B., Hatzidimitriou, P.M., Karagianni, E.E., Kane, I., 2005. Recent seismic activity (1994–2002) of the Santorini volcano using data from local seismological network. The South Aegean Active Volcanic Arc: Present Knowledge and Future Perspectives. Developments in Volcanology, vol. 7, pp. 185–203. https://doi.org/10.1016/S1871-644X(05)80038-5.
Dimitriadis, I., Papazachos, C., Panagiotopoulos, D., Hatzidimitriou, P., Bohnhoff, M., Rische,M., Meier, T., 2010. P and S velocity structures of the Santorini–Kolumbo volcanic system (Aegean Sea, Greece) obtained by non-linear inversion of travel times and its tectonic implications. Journal of Volcanology and Geothermal Research 195,13–30. https://doi.org/10.1016/j.jvolgeores.2010.05.013
Dimitris, P., Xristos, E., Konstantinos, M., 2011. The “Hellenic Unified Seismological Network-HUSN”: Its implication in the accurate monitoring of the seismicity in the broader area of Aegean Sea. Comprehensive Nuclear-Test-Ban Treaty: Science and Technology.
Fréchet, J., 1985. Sismogenèse et doublets sismiques, thèse d′Etat, Univ. Sci. et Méd. de Grenoble, Grenoble, France, pp. 206.
Friederich, W., and Meier, T., 2005. Egelados project 2005/07, RUB Bochum, Germany. Deutsches GeoForschungsZentrum GFZ. Other/Seismic Network. https://doi.org/10.14470/M87550267382.
Friederich, W., and Meier, T., 2008. Temporary Seismic Broadband Network Acquired Data on Hellenic Subduction Zone. EOS 89, 378. https://doi.org/10.1029/2008EO400002.
Fuller, S., Carey, S., Nomikou, P., 2013. Distribution of tephra from the 1650AD submarine eruption of Kolumbo volcano, Greece. Abstract to Fall AGU Meeting.
Galanopoulos, A., 1982. The damaging shocks and earthquake potential of Greece, Ann. Geol. Pays Hellen., 30, 648–724.
Gomberg, J.S., Shedlock, K.M., Roecker, S.W., 1990. The effect of S-wave arrival times on the accuracy of hypocenter estimation. Bull. Seismol. Soc. Am. 80, 1605–1628.
Got, J.-L., Fréchet, J., Klein, F.W., 1994. Deep fault plane geometry inferred from multiplet relative relocation beneath the south flank of Kilauea. J. Geophys. Res. 99,15,375– 15,386.
Hübscher, C., Ruhnau, M., Nomikou, P., 2015. Volcano-tectonic evolution of the polygenetic Kolumbo submarine volcano/Santorini (Aegean Sea). J. Volcanol. Geotherm. Res. 291, 101-111. https://doi.org/10.1016/j.jvolgeores.2014.12.020.
IGME, 1986. Geological map of Greece 1:50,000, Astipalia sheet: IGME, Athens.
Jolivet, L., Menant, A., Clerc, C., Sternai, P., Bellahsen, N., Leroy, S., Pik, R., Stab, M., Faccenna, C., Gorini, G., 2018. Extensional crustal tectonics and crust-mantle coupling, a view from the geological record. Earth Sci Rev 185:1187–1209. https://doi.org/10.1016/j.earscirev.2018.09.010.
Jost, M. L. and Hermann, R. B., 1989. A Student′s Guide to and Review of Moment Tensors. Seismological Research Letters. 60 (2). pp. 37-57. https://doi.org/10.1785/gssrl.60.2.37.
Julian, B. R., Miller, A. D., Foulger, G. R., 1998. Non-double-couple earthquakes 1. theory, Rev. Geophys. 36, 525–549. https://doi.org/10.1029/98RG00716.
Kagan, Y.Y., 2009. On the geometric complexity of earthquake focal zone and fault systems: a statistical study. Phys. Earth Planet. Inter. 173 (3–4), 254–268. https://doi.org/10.1016/j.pepi.2009.01.006.
Kikuchi, M., and Kanamori, H., 1991. Inversion of complex body waves. III, Bull. Seismol. Soc. Am. 81, 2335–2350.
Konstantinou, K. I., Mouslopoulou, V., Liang, W.-T., Heidbach, O., Oncken, O., and Suppe, J., 2016. Present-day crustal stress field in Greece inferred from regional-scale damped inversion of earthquake focal mechanisms, J. Geophys. Res. Solid Earth, 121. https://doi.org/10.1002/2016JB013272.
Křížová, D., Zahradník, J., Kiratzi, A., 2013. Resolvability of Isotropic Component in Regional Seismic Moment Tensor Inversion, Bull. Seismol. Soc. Am., 103, 2460-2473. https://doi.org/ 10.1785/0120120097.
Lomax, A., Michelini, A., Curtis, A., 2009. Earthquake Location, Direct, Global-Search Methods, in Complexity In Encyclopedia of Complexity and System Science, Part 5. Springer, New York, pp. 2449-2473, https://doi.org/10.1007/978-0-387-30440-3.
Lomax, A., Virieux, J., Volant, P., Berge, C., 2000. Probabilistic earthquake location in 3D and layered models: Introduction of a Metropolis-Gibbs method and comparison with linear locations, in Advances in Seismic Event Location Thurber, C.H., and N. Rabinowitz (eds.), Kluwer, Amsterdam, 101-134.
Makropoulos, K., Drakopoulos, J., and Latousakis, J.. 1989. A revised and extended earthquake catalogue for Greece since 1900, Geophys. J. Int., 98, 391–394. https://doi.org/10.1111/j.1365-246X.1989.tb03360.x.
McClusky, S., Balassanian, S., Barka, A., 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus.J. Geophys. Res. 105:5695–5719. http://dx.doi.org/10.1029/1999JB900351.
Menke, W., 1989. Geophysical Data Analysis: Discrete Inverse Theory. Academic Press, San Diego, California.
Moser, T.J., van Eck, T., Nolet, G., 1992. Hypocenter determination in strongly heterogeneous earth models using the shortest path method., J. Geophys. Res., 97, 6563-6572.
Nomikou, P., Carey, S., Papanikolaou, D., Croff, Bell K., Sakellariou, D., Alexandri, M., Bejelou, K., 2012. Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Global and Planetary Change 90–91, 135–151. http://dx.doi.org/10.1016/j.gloplacha.2012.01.001
Nomikou, P., Hübscher, C., Papanikolaou, D., Farangitakis, G.P., Ruhnau, M., Lampridou, D., 2018. Expanding extension, subsidence and lateral segmentation within the Santorini- Amorgos basins during Quaternary: implications for the 1956 Amorgos events, central-south Aegean Sea, Greece. Tectonophysics 722, 138–153. https://doi.org/10.1016/j.tecto.2017.10.016.
Okal, E., Synolakis, C., Uslu, B., Kalligeris, N., and Voukouvalas, E., 2009. The 1956 earthquake and tsunami in Amorgos, Greece, Geophys. J. Int., 178, 1533–1554. https://doi.org/10.1111/j.1365-246X.2009.04237.x.
Paige, C. C., and Saunders, M. A., 1982. LSQR: Sparse linear equations and least squares problems, ACM Transactions on Mathematical Software 8/2, 195–209.
Papanikolaou, D., 2013. Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics. 595-596:1–24. http://dx.doi.org/10.1016/j.tecto.2012.08.008.
Papazachos, B.C., Karakostas, V.G., Papazachos, C.B., Scordilis, E.M., 2000. The geometry of the Wadati–Benioff zone and lithospheric kinematics in the Hellenic arc. Tectonophysics 319, 275–300. https://doi.org/10.1016/S0040-1951(99)00299-1.
Papazachos, B.C., Panagiotopoulos, D.G., 1993. Normal faults associated with volcanic activity arc. Tectonophysics 220 (1–4):301–308. http://dx.doi.org/10.1016/0040- 1951(93)90237-E
Piper, D., Pe-Piper, G., Perissoratis, C., 2007. Distribution and chronology of submarine volcanic rocks around Santorini and their relationship to faulting. Geol. Soc. Lond. Spec. Publ. 291:99–111. http://dx.doi.org/10.1144/SP291.5
Rizzo, A. L., Caracausi, A., Chavagnac, V., Nomikou, P., Polymenakou, P. N., Mandalakis, M., 2016. Kolumbo submarine volcano (Greece): an active window into the Aegean subduction system. Sci. Rep. 6:28013. https://doi.org/10.1038/srep28013.
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O′Hara, S., Melkonian, A., Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F., Bonczkowski, J., Zemsky R., 2009. Global Multi- Resolution Topography synthesis. Geochem. Geophys. Geosyst., 10, Q03014. https://doi.org/10.1029/2008GC002332.
Sokos, E. N., and J. Zahradník, 2008. ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data. Comput. Geosci. 34, 967–977. https://doi.org/10.1016/j.cageo.2007.07.005.
Sokos, E., and Zahradník, J., 2013. Evaluating centroid moment tensor uncertainty in new version of ISOLA software. Seismol. Res. Lett., 84, 656–665. https://doi.org/10.1785/0220130002.
Soukis, K., Papanikolaou, D., 2004. Contrasting geometry between alpine and late- to post- alpine tectonic structures in Anafi Island (Cyclades). Bull. Geol. Soc. Greece 36, 1688–1696. http://dx.doi.org/10.12681/bgsg.16575.
Tarantola, A., and Valette, B., 1982. Inverse problems = quest for information., J. Geophys., 50, 159-170.
Templeton, D. C., and Dreger, D. S., 2006. Non-double-couple earthquakes in the Long Valley volcanic region. Bull. Seismol. Soc. Am. 96, 69–79. https://doi.org/10.1785/0120040206.
Ten Veen, J.H. and Kleinspehn, K.L., 2003. Incipient continental collision and plate boundary curvature: Late Pliocene-Holocene transtensional Hellenic forearc, Crete, Greece. Journal of the Geological Society, v. 160, 161-181. https://doi.org/10.1144/0016- 764902-067.
Tirel, C., Gueydan, F., Tiberi, C., Brun, J.-P., 2004. Aegean crustal thickness inferred from gravity inversion. Geodynamical implications. Earth Planet. Sci. Lett. 228
(3-4) : 267-280. http://dx.doi.org/10.1016/j.epsl.2004.10.023.
Trotet, F., Jolivet, L., Vidal, O., 2001. Tectono-metamorphic evolution of Syros and Sifnos islands (Cyclades, Greece). Tectonophysics 338, 179–206. https://doi.org/10.1016/S0040-1951(01)00138-X.
Tsampouraki-Kraounaki, K., Sakellariou, D., 2017. Strike-slip deformation behind the Hellenic subduction: The Amorgos Shear Zone, South Aegean Sea. Proc. 8th Intern. INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology, p.392- 395.
Waldhauser, F., 2001. HypoDD: a computer program to compute double-difference hypocenter locations. U.S. Geol. Surv. Open File Rep. 01-113, 25. https://doi.org/10.3133/ofr01113.
Waldhauser, F., Ellsworth, W.L., 2000. A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bull. Seismol. Soc. Am. 90, 1353–1368. https://doi.org/10.1785/0120000006.
Waldhauser, F. and Schaff, D. P., 2008. Large-scale relocation of two decades of Northern California seismicity using cross-correlation and double-difference methods. J. Geophys. Res., 113, B08311. https://doi.org/10.1029/2007JB005479.
Wittlinger, G., Herquel G., and Nakache, T., 1993. Earthquake location in strongly heterogeneous media, Geophys. J. Int., 115, 759-777.
Woodward, J. (Ed.), 2009. The Physical Geography of the Mediterranean. Oxford University Press, Oxford Regional Environments Series, 704 pp., ISBN 978‐0‐19‐926803‐0. https://doi.org/10.1002/gea.21400
指導教授 K. I. Konstantinou(K. I. Konstantinou) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明