博碩士論文 106622605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.191.139.230
姓名 納莉娜(Izaina Nurfitriana)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱
(Permutation Entropy Variation of Seismic Noise prior to Eruptive Activity at Shinmoedake Volcano, Japan)
相關論文
★ 台灣東北部龜山島的地震活動特性★ 印尼Semeru火山地區之火山顫動非線性動態性質分析
★ Forecasting volcanic eruptions using permutation entropy variations in ambient seismic noise★ Nonlinear Dynamics of Volcanic Tremor Recorded at Mt. Erebus Volcano, Antarctica
★ 模擬在地熱型及佛卡諾型噴發中的火山彈道拋體軌跡,以台灣北部大屯山火山群中的七星山為例★ A reappraisal of seismicity recorded during the 1996 Gjalp eruption in Iceland using modern seismological methods
★ Duration-amplitude scaling of volcanic tremor recorded at Mt. Erebus volcano, Antarctica★ Seismic Anisotropy of the Upper- and Lower-Crust in the South Aegean Inferred from Shear-Wave Splitting
★ 試問2017年比加半島(土耳其)的地震群是否為誘發性地震?從多年地震記錄分析的觀察★ 由海底地震儀資料探討南沖繩海槽熱液活動
★ 日本新茂岳火山三次噴發週期地震噪聲中排列熵的時間變化★ 關於愛琴海岩石圈的異質性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去的二十年中,用於數據分析的排列熵(PE)的使用一直在迅速增
長。衡量任意時間序列複雜性的能力在許多領域都有廣泛的應用。我們試圖在
火山學中使用這種方法作為火山爆發預測的方法。我們在日本九州島研究了
2011 年 1 月的新燃岳火山爆發序列。
2011 年 1 月,新燃岳火山爆發了最大規模的火山爆發,其中包括持續兩週
的子普林尼式噴氣,連續爆炸和熔岩侵位階段。在這項研究中,我們將 PE 計
算應用於新燃岳火山周圍記錄的地震噪聲。我們還計算了譜圖和極化分析作為
支持材料來分析 PE 的變化。結果顯示,PE 在 2011 年 1 月 1 日至 17 日呈現振
盪模式,然後在 2011 年 1 月 18 日至 31 日期間下降並降低。2011 年 1 月 1 日至
17 日期間 PE 的振盪模式主要與天氣變化有關,且並未引起通過火山活動。
2011 年 1 月 18 日至 31 日期間 PE 值的下降與震顫發生同時發生。我們發現震
顫中的確定性行為是導致一般 PE 值降低的主要因素。極化分析結果還表明,
在低 PE 值時期,地震源的方位角方向指向新燃岳火山口。我們還繪製了
Ichihara 和 Matsumoto(2017)的 PE 值和震顫深度位置,以檢查它們之間是否
存在相關性。結果顯示 PE 與震顫深度位置成反比關係。當震顫源向上遷移並
到達水層時,PE 減少。這種降低的 PE 可能是由於水層內沸騰產生的氣泡形
成,蒸汽和高溫引起的衰減過程的結果。相反,當震顫源遷移到比水層更深
時,PE 增加。這種增加的 PE 可能是由於沒有氣泡,蒸汽和更高的溫度。該系
統不會衰減高頻並可能產生更隨機的信號。 PE 有可能在火山爆發前早期發現
震顫。隨著震顫在主要噴發之前開始,PE 減少。在 2011 年 1 月的新燃岳噴發
序列可觀察到 PE 值的增加和突然下降模式。
摘要(英) In the past two decades, the use of permutation entropy (PE) for data analysis has been growing rapidly. The ability to measure the complexity of an arbitrary time series has had a wide application in many fields. We attempt to use this method in volcanology as an approach to volcanic eruption forecasting. We studied the January 2011 Shinmoedake eruptions sequence, in Kyushu island, Japan. The Shinmoedake volcano had its largest eruption in January 2011 with phreatomagmatic, sub-plinian, continuous explosion and lava emplacement stages, that lasted for two weeks. In this study, we applied the PE calculation to seismic noise recorded around the Shinmoedake volcano. We also performed spectral and polarization analysis as supporting materials to analyze the variation of PE. The results show that PE exhibited an oscillatory pattern during 1-17 January 2011 and then decreased and became lower during 18-31 January 2011. The oscillatory pattern of PE during 1-17 January 2011 was related mostly to the weather change and was not caused by volcanic activities. The decrease of PE values during 18-31 January 2011 coincided with tremor occurrence. We found that the deterministic behavior in tremor was a causative factor that led to decreasing PE values in general. The polarization analysis results also showed that in the periods of low-PE value, the azimuth direction of seismic sources pointed toward the Shinmoedake crater. We also plotted the PE values and tremor depth locations from Ichihara and Matsumoto (2017) to check if there is a correlation between them. The results showed that PE has an inverse relationship with tremor depth locations. When tremor sources migrated upwards and reached the water layer, PE decreased. This decreasing PE was probably a result of attenuation processes due to bubble formation, steam, and high temperature that arise from boiling inside the water layer. On the contrary, when tremor sources migrated deeper than the water layer, PE increased. This increasing PE was probably due to the absence of bubbles, steam, and higher temperature. The system would not attenuate high frequencies and hence produce a more stochastic signal. PE has the potential to detect tremor early before the eruption. PE decreases as the tremor starts before the main eruption. PE also captured the eruption events in January 2011 Shinmoedake eruptions sequence. They were marked with an increasing and sudden drop pattern of PE values.
關鍵字(中) ★ 排列熵
★ 新燃岳火山
★ 震顫
★ 極化分析
關鍵字(英) ★ Permutation entropy
★ Polarization analysis
★ Shinmoedake
★ Tremor
★ Complexity
★ Ambient noise
論文目次 ABSTRACT i
ACKNOWLEDGMENTS ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES vi
CHAPTER I
INTRODUCTION 1
1.1 Shinmoedake volcano and its eruptive activities during 2008-2011 1
1.2 Ambient Seismic Noise 1
1.2.1 Definition and observations 2
1.2.2 Ambient seismic noise in volcano monitoring 2
1.2.3 Ambient seismic noise as a complex time series 3
1.3 Quantifying complexity of time series: Permutation entropy 4
1.4 Aims and structure of this thesis 5
CHAPTER II
DATA DESCRIPTION AND SPECTRAL ANALYSIS 12
2.1 Earthquake Research Institute (ERI) Station Array 12
2.2 Data Pre-processing 12
2.3 Spectral and RMS amplitude analysis 13
CHAPTER III
CALCULATION OF PERMUTATION ENTROPY AND POLARIZATION ANALYSIS 18
3.1 Permutation Entropy 18
3.1.1 Method 18
3.1.2 Selection of parameters 19
3.1.3 Results: Temporal variation of permutation entropy 20
3.2 Polarization Analysis 21
3.2.1 Method 21
3.2.2 Results: Azimuth directions of the seismic noise wavefield 23
CHAPTER IV 34
DISCUSSION AND CONCLUSIONS 34
4.1 Interpretation of results 34
4.2 Conclusions 37
REFERENCES 43
APPENDIX A: Sensitivity test of different parameters m and L for calculating PE 46
APPENDIX B: Statistical test for assessing azimuth angle 51
APPENDIX C: Plot of PE variation and acoustic signal 53
APPENDIX D: Scatter plot of tremor depth location and PE variation 58
參考文獻 Bandt, C. & Pompe, B., 2002. Permutation Entropy : A Natural Complexity Measure for Time Series. Phys. Rev. Lett., 88, 174102-1--174102-4. doi: 10.1103/PhysRevLett.88.174102

Berens, P., 2009. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw., 31, 1-21

Brenguier, F., Shapiro, N., Campilo, M., Ferrazzini, V., Duputel, Z., Countant, O., Necressian, A., 2008. Toward forecasting volcanic eruptions using seismic noise. Nature Geoscience, 1(2), 126-130. doi:10.1038/ngeo104

Cao, Y., Tung, W., Gao, J.B., Protopopescu, V.A., Hively, L.M., 2004. Detecting dynamical changes in time series using the permutation entropy. Phys. Rev. E, 70, 046217-1-- 046217-6. doi: 10.1103/PhysRevE.70.046217

Chouet, B. A., 1996. Long-period volcano seismicity : its source and use in eruption forecasting. Nature, 380, 309-316.

Cannata, A., Cannavò, F., Montalto, P., Ercoli, M., Mancinelli, P., Pauselli, C., et al., 2017. Monitoring crustal changes at volcanoes by seismic noise interferometry: Mt. Etna case of study. J. Volcanol. Geotherm. Res., 37, 165–174.
doi: 10.1016/j.jvolgeores.2017.03.023

Daw, C. S., Finney, C. E. A., and Tracy, E. R., 2003. A Review of Symbolic Analysis of Experimental Data. Rev. Sci. Instrum., 74(2), 915–930.

Duputel, Z. Ferrazzini, V., Brenguier, F., Shapiro, N., Campillo, M., Nercessian, A., 2009. Real time monitoring of relative velocity changes using ambient seismic noise at the Piton de la Fournaise volcano (La Reunion) from January 2006 to June 2007. J. Volcanol. Geoterm. Res., 184, 164-173. doi:10.1016/j.jvolgeores.2008.11.024

Dutta, D., Bhattacharjee, J.K., 2007. Limit cycle oscillations. Vibration Problem ICOVP-2007, 125-135

Glynn, C. C. & Konstantinou, K. I., 2016. Reduction of randomness in seismic noise as a short- term precursor to a volcanic eruption. Scientific Reports, 6, 37733. doi: 10.1038.srep37733

Grassberger, P. & Procaccia, I., 1983. Characterization of strange attractors. Phys. Rev. Lett., 50, 346–349

Gret, A., Snieder, R., Aster, R. C. & Kyle, P. R., 2005. Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophys. Res. Lett., 32(L06304). doi:10.1029/2004GL021143

Haney, M., 2009. Polarizemic: 3 component seismic polarization analysis. Retrieved from https://github.com/dylanmikesell/Polarizemic

Hilborn, R. C., 1994. Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, 654.

Ichihara, M. & Matsumoto, S., 2017. Relative Source Locations of Continuous Tremor Before and After the Subplinian Events at Shinmoe-dake, in 2011. Geophys. Res. Lett., 44, 10871-10877. doi: 10.1002/2017GL075293

Imura, R. & Kobayashi, T., 1991. Eruptions of Shinmoe-dake volcano, Kirishima volcano group, in the last 300 years. Bull. Volc. Soc Japan, 36, 135-146.

Julian, B.R., 2000. Period doubling and other nonlinear phenomena in volcanic earthquakes and tremor, J. Volcanol. Geotherm. Res., 101, 19–26.

Jurkevics, A., 1988. Polarization analysis of three‐component array data. Bull. Seismol. Soc. Am., 78, 1725–1743.

Kagiyama, T., Takeo, M., and Tsutsui, M., 2013. Report of the Japan Meteorology Agency. Tokyo: JMA

Kagiyama, T., Utada, H., Uyeshima, M., Masutani, F., Kanda, W., Tanaka, Y., ... Mishina, M., 1996. Resistivity structure of the central and the southeastern part of Kirishima volcanoes. Bull. Volcanol. Soc. Jpn., 41, 215–224.

Kamata H., 1998. Quaternary volcanic front at the junction of the Southwest Japan Arc and the
Ryukyu Arc. J. Asian Earth Sci., 16, 67–75.

Kamata, H., & Kodama, K., 1999. Volcanic history and tectonics of the Southwest Japan Arc. Island Arc, 8 (3), 393-403. doi: 10.1046/j.1440-1738.1999.00241.x

Kato, K., & Yamasato, H., 2013. The 2011 eruptive activity of Shinmoedake volcano, Kirishimayama, Kyushu, Japan—Overview of activity and Volcanic Alert Level of the Japan Meteorological Agency—. Earth, Planets and Space, 65, 489–504. doi:10.5047/eps.2013.05.009

Killick, R., Paul F., and Idris A., 2012. Optimal detection of changepoints with a linear computational cost. J. Am. Stat. Assoc., 107, 1590–1598.

Langton, C.G., 1992. Life on the edge of chaos. Artificial Life II, Santa Fé Institute Studies in the Sciences of Complexity (Proceedings Vol. X) (Langton, C.G., Taylor, C., Farmer, J.D., and Rasmussen, S., Eds.) Addison-Wesley, Redwood City CA, USA, pp. 41-91.

Lavielle, M., 2005. Using penalized contrasts for the change-point problem. Signal Processing, 85, 1501–1510.

Miyabuchi, Y., Hanada, D., Niimi, H., Kobayashi, T., 2013. Stratigraphy, grain-size and component characteristics of the 2011 Shinmoedake eruption deposits, Kirishima Volcano, Japan. J. Volcanol. Geotherm. Res., 258, 31–46.

Modret, A., Jolly, A., Duputel, Z. & Fournier, N., 2010. Monitoring of phreatic eruptions using Interferometry on Retrieved Cross-Correlation Function from Ambient Seismic Noise: Results from Mt. Ruapehu, New Zealand. J. Volcanol. Geoterm. Res, 191(2010), 46-59.
doi: 10.1016/j.jvolgeores.2010.01.010

Nakada, S., Nagai, M., Kaneko, T., Suzuki, Y., Maeno, F., 2013. The outline of the 2011 eruption at Shinmoe-dake (Kirishima), Japan. Earth, Planets and Space, 65, 475–488. doi:10.5047/eps.2013.03.016

Nakao, S. Morita, Y., Yakwara, H., Oikawa, J., Ueda, H., Takahashi, H., Ohta, T., Matsushima, T., Iguchi, M., 2013. Volume change of the magma reservoir relating to the 2011 Kirishima Shinmoe-dake eruption- Charging, discharging and recharging process inferred from GPS measurement. Earth, Planets, and Space, 65, 505-515. doi:10.5047/eps.2013.05.017

Natsume, Y., Ichihara, M., Takeo, M., 2018. A non-linear time-series analysis of the harmonic tremor observed at Shinmoedake volcano, Japan. Geophys. J. Int., 216(3), 1768-1784. doi: 10.1093/gji/ggy522

Obermann, A., Planes, T., Larose, E. & Campillo, M., 2013. Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res. Solid Earth, 118, 6285-6294. doi:10.1002/2013JB010399, 2013

Riedl, M., Muller, A. & Wessel, N., 2013. Practical considerations of permutation entropy: A tutorial review. Eur. Phys. J. Special Topics , 222, 249-262. doi: 10.1140/epjst/e2013- 01862-7

Shapiro, N. M., M. H. Ritzwoller, and G. D. Bensen, 2006. Source location of the 26 sec microseism from cross-correlations of ambient seismic noise. Geophys. Res. Lett., 33, L18310, doi:10.1029/2006GL027010

Suzuki, Y., Yasuda, A., Hokanishi, N., Kaneko, T., Nakada, S., Fujii, T., 2013. Syneruptive deep magma transfer and shallow magma remobilization during the 2011 eruption of Shinmoe-dake, Japan-Constraints from melt inclusions and phase equilibria experiments. J. Volcanol. Geoterm. Res, 257, 184–204. doi: 10.1016/j.jvolgeores.2013.03.017

Wilkinson, M., 1997. Nonlinear dynamics, chaos-theory, and the "sciences of complexity": Their relevance to the study of the interaction between host and microflora. in PJ Heidt, Rusch & D VanderWaaij (eds), New Antimicrobial Strategies. Old Herborn University Seminar Monograph, Vol. 10, Inst Microecology & Biochem, Herborn-Dill, 111- 130, 10th Old-Herborn-University Seminar on New Antimicrobial Strategies, Germany.

Yang, Y. & Ritzwoller, M. H., 2008. Characteristics of ambient seismic noise as a source for surface wave tomography. Geochem. Geophys. Geosyst., 9(Q02008).
doi:10.1029/2007GC001814
指導教授 柯士達(K.I. Konstantinou) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明