參考文獻 |
[1] M. Spidell, J. Lehman, M. Lopez, H. Lecher, and S. Kuck, “A bilateral comparison of
nist and ptb laser power standards for scale realization confidence by gravitational wave
observatories,” Metrologia, vol. 58, no. 5, p. 055011, 2021.
[2] D. Bhattacharjee, R. L. Savage, R. Bajpai, J. Betzwieser et al., “Calibrating the global
network of gravitational wave observatories via laser power calibration at nist and ptb,”
Metrologia, vol. 61, no. 1, 2024.
[3] C. M. Wu, W. Y. Cheng, and R. K. Lee, “Cesium 6S1/2 → 8S1/2 two-photon transition
stabilized 822.5nm diode laser,” in 2008 Conference on Precision Electromagnetic Mea-
surements. IEEE, 2008, p. 180.
[4] C. M. Wu, T. W. Liu, M. H. Wu, R. K. Lee, and W. Y. Cheng, “Absolute frequency of
cesium 6S–8S 822 nm two-photon transition by a high-resolution scheme,” Optics Letters,
vol. 38, no. 16, p. 3186, 2013.
[5] P. A. Williams, M. T. Spidell, J. A. Hadler, and T. Gerrits, “Meta-study of laser power
calibrations ranging 20 orders of magnitude with traceability to the kilogram,” Metrologia,
vol. 56, no. 5, p. 015001, 2019.
[6] David Livigni, “High-Accuracy Laser Power and Energy Meter Calibration Service (NIST
SP 250-62),” 2003-08-01 2003.
[7] P. Williams, J. Hadler, F. Maring, R. Lee, and K. Rogers, “Portable, high-accuracy, non-
absorbing laser power measurement at kilowatt levels by means of radiation pressure,”
Optics Express, vol. 25, no. 4, p. 4382, 2017.
[8] S. Kuck, “Final report on euromet comparison euromet.pr-s2 (project no. 156): Respon-
sivity of detectors for radiant power of lasers,” Metrologia, vol. 47, no. 1A, p. 02003,
2010.
147
[9] A. K. Vaskuri, M. S. Stephens, N. A. Tomlin, M. T. Spidell et al., “High-accuracy room
temperature planar absolute radiometer based on vertically aligned carbon nanotubes,”
Optics Express, vol. 29, no. 14, p. 22533, 2021.
[10] M. A. Bouchiat and C. Bouchiat, “Parity violation induced by weak neutral currents in
atomic physics,” Journal de Physique, vol. 35, no. 12, p. 899, 1974.
[11] R. N. Watts, S. L. Gilbert, and C. E. Wieman, “Precision measurement of the Stark shift of
the 6S-7S transition in atomic cesium,” Physical Review A, vol. 27, no. 6, p. 2769, 1983.
[12] Y. Tian, P. Yang, W. Wu, S. Li, and G. Li, “Precision measurement of cesium 6S–7S two-
photon spectra with single trapped atoms,” Japanese Journal of Applied Physics, vol. 58,
no. 4, p. 042002, 2019.
[13] B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams,
and et al., “Observation of gravitational waves from a binary black hole merger,” Phys. Rev.
Lett., vol. 116, p. 061102, 2016.
[14] Jordan B. Camp, “The Status of Gravitational Wave Astronomy,” in , 2004.
[15] LIGO Scientific Collaboration, “Analyzing Elastic Deformation of Test Masses in
LIGO,” https://dcc.ligo.org/public/0004/T0900401/001/T0900401.pdf, 2009, LIGO Tech-
nical Document, T0900401.
[16] Y. Inoue, B. H. Hsieh, K. H. Chen, Y. K. Chu, and K. Ito, “Development of advanced pho-
ton calibrator for Kamioka gravitational wave detector (KAGRA),” Review of Scientific
Instruments, vol. 94, no. 7, p. 074502, 2023.
[17] E. Goetz, P. Kalmus, S. Erickson et al., “Precise calibration of LIGO test mass actua-
tors using photon radiation pressure,” Classical and Quantum Gravity, vol. 26, no. 24, p.
245011, 2009.
[18] D. Bhattacharjee, Y. Lecoeuche, S. Karki et al., “Fiducial displacements with improved
accuracy for the global network of gravitational wave detectors,” Classical and Quantum
Gravity, vol. 37, no. 10, p. 015009, 2020.
148
[19] LIGO Scientific Collaboration, “Photon Calibrator Final Design,” https://dcc.ligo.
org/public/0032/T1100068/023/PhotonCalibratorFinalDesign.pdf, 2014, LIGO Technical
Document, T1100068.
[20] A. Kaplan, M. F. Andersen, and N. Davidson, “Suppression of inhomogeneous broadening
in rf spectroscopy of optically trapped atoms,” Physical Review A, vol. 66, no. 4, p. 045401,
2002.
[21] D. D. Yavuz, N. R. Brewer, J. A. Miles, and Z. J. Simmons, “Suppression of inhomoge-
neous broadening using the ac stark shift,” Physical Review A, vol. 88, no. 6, p. 063836,
2013.
[22] F. Yang, X. Wang, J. Ruan, J. Shi, S. Fan, Y. Bai, and Y. Guan, “Experimental evaluation
of the blackbody radiation shift in the cesium atomic fountain clock,” Applied Sciences,
vol. 12, no. 1, p. 510, 2022.
[23] G. A. Costanzo, S. Micalizio, A. Godone, and J. C. Camparo, “ac stark shift measurements
of the clock transition in cold cs atoms: Scalar and tensor light shifts of the transition,”
Physical Review A, vol. 93, no. 6, p. 063404, 2016.
[24] N. B. Delone and V. P. Krainov, “AC Stark shift of atomic energy levels,” Physics-Uspekhi,
vol. 42, no. 7, p. 669, 1999.
[25] R. Grimm, M. Weidemuller, and Y. Ovchinnikov, “Optical dipole traps for neutral atoms,”
Advances in Atomic, Molecular, and Optical Physics, vol. 42, p. 95, 2000.
[26] B. J. Sussman, “Five ways to the nonresonant dynamic stark effect,” American Journal of
Physics, vol. 79, no. 5, p. 477, 2011.
[27] M. Haas, U. D. Jentschura, and C. H. Keitel, “Comparison of classical and second quan-
tized description of the dynamic Stark shift,” American Journal of Physics, vol. 74, no. 1,
p. 77, 2006.
149
[28] M. S. Safronova, W. R. Johnson, and A. Derevianko, “Relativistic many-body calculations
of energy levels, hyperfine constants, electric-dipole matrix elements, and static polariz-
abilities for alkali-metal atoms,” Physical Review A, vol. 60, p. 4476, 1999.
[29] G. Toh, A. Damitz, C. E. Tanner, W. R. Johnson, and D. S. Elliott, “Determination of the
scalar and vector polarizabilities of the cesium 6s2s1/2 → 7s2s1/2 transition and impli-
cations for atomic parity nonconservation,” Physical Review Letters, vol. 123, p. 073002,
2019.
[30] V. Gerginov, K. Calkins, C. E. Tanner, J. J. McFerran, S. Diddams, A. Bartels, and L. Holl-
berg, “Optical frequency measurements of 6s2s1/2 ? 6p2p1/2 (d1) transitions in 133Cs and
their impact on the fine-structure constant,” Physical Review A, vol. 73, p. 032504, 2006.
[31] G. Grynberg, “Doppler-free multi-photon excitation: light shift and saturation,” Journal
de Physique, vol. 40, no. 7, p. 657, 1979.
[32] W. M. McClain and R. A. Harris, “Two-photon molecular spectroscopy in liquids and
gases,” in Excited States. Academic Press, 1977, p. specific pages needed.
[33] K. K. Lehmann, “Optical cavity with intracavity two-photon absorption,” Journal of the
Optical Society of America B, vol. 37, no. 10, p. 3055, 2020.
[34] L. Li, B. X. Yang, and P. M. Johnson, “Alternating-current Stark-effect line shapes in
multiphoton ionization spectra,” Journal of the Optical Society of America B, vol. 2, no. 5,
p. 748, 1985.
[35] M. Rumi and J. W. Perry, “Two-photon absorption: an overview of measurements and
principles,” Advances in Optics and Photonics, vol. 2, no. 4, p. 451, 2010.
[36] R. Paschotta, “Gaussian Beams,” RP Photonics Encyclopedia.
[37] B. Girard, G. O. Sitz, R. N. Zare, and N. Billy, “Polarization dependence of the ac Stark
effect in multiphoton transitions of diatomic molecules,” The Journal of Chemical Physics,
vol. 97, no. 1, p. 26, 1992.
150
[38] C.-Y. Chang, “Study on the R(81)29-0 hyperfine transitions of iodine molecule (127I2) for
539.5-nm diode laser stabilization,” Master’s thesis, National Central University, 2022.
[Online]. Available: https://hdl.handle.net/11296/n7h49s
[39] W. Y. Cheng, T. J. Chen, C. W. Lin, B. W. Chen, and Y. P. Yang, “Robust sub-millihertz-
level offset locking for transferring optical frequency accuracy and for atomic two-photon
spectroscopy,” Optics Express, vol. 25, no. 3, p. 2752, 2017.
[40] G. W. O. S. Center, “Componentlibrary,” https://www.gwoptics.org/ComponentLibrary/.
[41] W. Y. Cheng and J. T. Shy, “Wavelength standard at 543 nm and the corresponding 127I2
hyperfine transitions,” Journal of the Optical Society of America B, vol. 18, no. 3, p. 363,
2001.
[42] T. J. Quinn, “Mise en Pratique of the Definition of the Metre (1992),” Metrologia, vol. 30,
no. 5, p. 445, 1994.
[43] J. Zhang, Z. H. Lu, and L. J. Wang, “Absolute frequency measurement of the molecular
iodine hyperfine components near 560 nm with a solid-state laser source,” Applied Optics,
vol. 48, no. 29, p. 5629, 2009.
[44] Y. C. Huang, H. C. Chen, S. E. Chen, J. T. Shy, and L. B. Wang, “Precise frequency mea-
surements of iodine hyperfine transitions at 671 nm,” Applied Optics, vol. 52, no. 7, p.
1448, 2013.
[45] W. Y. Cheng, J. T. Shy, and T. Lin, “A compact iodine-stabilized HeNe laser and crossover
resonances at 543 nm,” Optics Communications, vol. 155, no. 4-6, p. 314, 1998.
[46] W. Y. Cheng and J. T. Shy, “Lamb-dip stabilized 543-nm He-Ne lasers and isotope shift of
Ne 3s22p10 transition,” Applied Physics B, vol. 70, no. 2, p. 305, 2000.
[47] W. Y. Cheng, J. T. Shy, T. Lin, and C. C. Chou, “Molecular iodine spectra and laser stabi-
lization by frequency-doubled 1534 nm diode laser,” Japanese Journal of Applied Physics,
vol. 44, no. 5, p. 3055, 2005.
151
[48] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, and G. M. Ford, “Laser phase and
frequency stabilization using an optical resonator,” Applied Physics B, vol. 31, no. 2, p. 97,
1983.
[49] E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,”
American Journal of Physics, vol. 69, no. 1, p. 79, 2001.
[50] G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak
absorptions and dispersions,” Optics Letters, vol. 5, no. 1, p. 15, 1980.
[51] L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,”
Journal of the American Chemical Society, vol. 58, no. 11, p. 2260, 1936.
[52] I. Blanco, G. Cicala, G. Recca, and C. Tosto, “Specific heat capacity and thermal conduc-
tivity measurements of pla-based 3d-printed parts with milled carbon fiber reinforcement,”
Entropy, vol. 24, p. 654, 2022.
[53] S. Fredin-Picard, “A study of contamination in 127I2 cells using laser-induced fluores-
cence,” Metrologia, vol. 26, no. 4, p. 233, 1989.
[54] M. Zucco, L. Robertsson, and J. P. Wallerand, “Laser-induced fluorescence as a tool to ver-
ify the reproducibility of iodine-based laser standards: a study of 96 iodine cells,” Metrolo-
gia, vol. 50, no. 4, p. 402, 2013.
[55] J. Hrabina, M. Zucco, C. Philippe, T. M. Pham, and M. Hola, “Iodine absorption cells
purity testing,” Sensors, vol. 17, no. 1, p. 102, 2017.
[56] D. Romanini, I. Ventrillard, G. Mejean, J. Morville, and E. Kerstel, “Introduction to cav-
ity enhanced absorption spectroscopy,” in Cavity-Enhanced Spectroscopy and Sensing.
Springer, 2014, p. 1.
[57] J. Zhou, W. Zhao, Y. Zhang, B. Fang, and F. Cheng, “Amplitude-modulated cavity-
enhanced absorption spectroscopy with phase-sensitive detection: a new approach applied
to the fast and sensitive detection of NO2,” Analytical Chemistry, vol. 94, no. 2, p. 874,
2022.
152
[58] R. F. Offer, J. W. C. Conway, E. Riis, and S. Franke-Arnold, “Cavity-enhanced frequency
up-conversion in rubidium vapor,” Optics Letters, vol. 41, no. 10, p. 2177, 2016.
[59] K. Durak, C. H. Nguyen, V. Leong, and S. Straupe, “Diffraction-limited fabry–perot cav-
ity in the near concentric regime,” New Journal of Physics, vol. 16, no. 10, p. 103002,
2014.
[60] H. Telfah, A. C. Paul, and J. Liu, “Aligning an optical cavity: with reference to cavity
ring-down spectroscopy,” Applied Optics, vol. 59, no. 30, p. 9464, 2020.
[61] M. Lisi, “A Review of Temperature Compensation Techniques for Microwave Resonators
and Filters,” in A Review of Temperature Compensation Techniques for Microwave Res-
onators and Filters, 11 2014.
[62] K. M. Baird, “Compensation for linear thermal expansion,” Metrologia, vol. 4, no. 3, p.
102, 1968.
[63] J. Zhang, Y. Luo, B. Ouyang, K. Deng, and Z. Lu, “Design of an optical reference cavity
with low thermal noise limit and flexible thermal expansion properties,” The European
Physical Journal D, vol. 67, p. 208, 2013.
[64] T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical
reference cavities with fused silica mirrors,” Journal of the Optical Society of America B,
vol. 27, no. 5, p. 914, 2010.
[65] O. Svelto, Principles of Lasers, 5th ed. Springer New York, NY, 2010, see pp. 131–179.
[66] N. Ismail, C. C. Kores, D. Geskus, and M. Pollnau, “Fabry-Perot resonator: spectral line
shapes, generic and related Airy distributions, linewidths, finesses, and performance at low
or frequency-dependent reflectivity,” Optics Express, vol. 24, no. 15, p. 16366, 2016.
[67] F. Biraben, M. Bassini, and B. Cagnac, “Line-shapes in doppler-free two-photon spec-
troscopy. the effect of finite transit time,” Journal de Physique, vol. 40, no. 5, p. 445,
1979.
153
[68] D. Coyne, “LIGO Vacuum Compatible Materials List,” LIGO Laboratory / LIGO Scien-
tific Collaboration, California, Working Note QCL-2023-05, 2004.
[69] P. Fulda, D. Voss, C. Mueller, L. F. Ortega, G. Ciani, G. Mueller, and D. B. Tanner, “Align-
ment sensing for optical cavities using radio-frequency jitter modulation,” Applied Optics,
vol. 56, no. 13, p. 3879, May 2017.
[70] A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl, R. Pohl, T. W. Hansch, and
T. Udem, “Two-photon frequency comb spectroscopy of atomic hydrogen,” Science, vol.
370, no. 6520, p. 1061, 2020.
[71] T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spec-
troscopy of a reflecting reference cavity,” Optics Communications, vol. 35, no. 3, p. 441,
1980.
[72] Y. Guan, C. Bandutunga, and M. B. Gray, “Using polarization to measure absorption in
cavity enhanced spectroscopy,” in Optics and Photonics for Sensing the Earth 2021. Op-
tica Publishing Group, 2021.
[73] M. Vainio, J. E. Bernard, and L. Marmet, “Cavity-enhanced optical frequency doubler
based on transmission-mode Hansch–Couillaud locking,” Applied Physics B, vol. 105,
no. 3, p. 683, 2011. |