博碩士論文 107222605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.17.55.53
姓名 譚瀚傑(Han-Jie Tan)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 基於Zwicky Transient Facility的半人馬型小行星和海外天體長期觀測
(Long-term observations of Centaurs and Trans-Neptunian Objects by Zwicky Transient Facility)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 長久以來,我們對於外太陽系都知之甚少。那是一個寒冷的世界,陽光十分微弱、天體的密度也很低。在這裡圍繞太陽公轉的天體是半人馬型小行星和海外天體。他們是太陽系最原始的天體,因此,他們也是探索太陽系形成與演化未解之謎的關鍵。

在我們的研究中,我們利用了Zwicky Transient Facility的最新觀測數據,對半人馬型小行星和海外天體的表面特性進行研究。研究包括他們的顏色分佈、表面變化以及彗星活動。在我們的長期觀測下,我們得到了32個天體的顏色數據,其中的5個是我們首次獲知它們的顏色。

對於半人馬型小行星(517717) 2015 KZ120,我們大量的觀測數據證明這是一個偏紅色、偏橢圓的天體,自轉週期為10.7633小時。通過檢查它的表面亮度和不同自轉角度下的顏色,我們並沒有找到其具有明顯的彗星活動或是表面顏色變化。此外,我們的動力學模擬還發現(517717) 2015 KZ120受到來自行星很強的引力影響,中位生存時間只有大約1200萬年。
摘要(英) For a long time, we knew very little about the outer solar system. There is a freezing world, sunlight is extremely weak and the density of object is very low. Orbiting in that region, Centaurs and Trans-Neptunian Objects are the most primitive objects in our solar system. Therefore, they are the key to
understanding the mysteries of the formation and evolution of the solar system.

In our study, we use the latest observational data from the Zwicky Transient Facility to investigate the surface properties of Centaurs and TNOs, which include their color distribution, surface variations and cometary activity. We have 32 Centaurs and TNOs object color data during our long-term observations, 5 out of 32 samples have color measurement for the first time.

For the Centaur (517717) 2015 KZ120, a large number of observations indicate it is a red and elongated object with a rotation period of 10.7633 hours. Searching for its surface brightness profile and color at different rotational phase, we didn′t find any cometary activity and significant color change at different faces. Moreover, our dynamical simulations show that the orbit of (517717) 2015 KZ120 was strongly affected by planets′ gravity, with the median lifetime is only ~12 Myr.
關鍵字(中) ★ 海外天體
★ 半人馬型小行星
關鍵字(英) ★ TNO
★ Centaur
★ ZTF
論文目次 摘要 i
Abstract ii
致謝 iii
Contents vi
List of Figures ix
List of Tables x

Chapter 1 Introduction 1
1.1 The previous studies 1
1.1.1 TNOs 1
1.1.2 Centaurs 3
1.2 Surface properties and color 5
1.3 Time series observation 8
1.3.1 Lightcurve and Shape 8
1.3.2 Surface changing 9
1.3.3 Cometary activity 10

Chapter 2 ZTF Observations of TNOs and Centaurs 11
2.1 About ZTF and our data 11
2.2 Color Analysis 13
2.3 Lightcurve Analysis 24

Chapter 3 Long-term observations of a Centaur, (517717) 2015 KZ120 28
3.1 Rotation period, shape and size 28
3.2 Color 33
3.3 Cometary Activity 34
3.4 Lifetime and simulation 35

Chapter 4 Summary 39

Bibliography 41
參考文獻 [1] Abazajian, Kevork N., et al. (2009) The seventh data release of the Sloan Digital Sky Survey. The Astrophysical Journal Supplement Series 182.2, 543.

[2] Abedin, Abedin Y., et al. (2021) OSSOS. XXI. Collision Probabilities in the Edgeworth–Kuiper Belt. The Astronomical Journal, 161.4, 195.

[3] Barucci, M. A., et al. (2011) New insights on ices in Centaur and Transneptunian populations. Icarus, 214.1, 297-307.

[4] Barucci, M. A., A. Doressoundiram, and D. P. Cruikshank. (2004) Surface characteristics of transneptunian objects and Centaurs from photometry and spectroscopy. Comets II, 647.

[5] Bellm, Eric C., et al. (2018) The zwicky transient facility: System overview, performance, and first results. Publications of the Astronomical Society of the Pacific 131.995, 018002.

[6] Benecchi, S. D., et al. (2019) The color and binarity of (486958) 2014 MU69 and other long-range New Horizons Kuiper Belt targets. Icarus 334, 22-29.

[7] Benecchi, Susan D., and Scott S. Sheppard. (2013) Light curves of 32 large transneptunian objects. The Astronomical Journal 145.5, 124.

[8] Bowell, Edward, et al. (1989) Application of photometric models to asteroids. Asteroids II, 524-556.

[9] Buie, Marc W., et al. (2010) Pluto and Charon with the Hubble Space Telescope. I. Monitoring global change and improved surface properties from light curves. The Astronomical Journal 139.3, 1117.

[10] Chambers, John E. (1999) A hybrid symplectic integrator that permits close encounters between massive bodies. Monthly Notices of the Royal Astronomical Society 304.4, 793-799.

[11] Chandler, Colin Orion, et al. (2020) Cometary Activity Discovered on a Distant Centaur: A Nonaqueous Sublimation Mechanism. The Astrophysical Journal Letters 892.2, L38.

[12] Cruikshank, Dale P., Yvonne J. Pendleton, and William M. Grundy. (2020) Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission. Life 10.8, 126.

[13] Cruikshank, D. P., et al. (2015) The surface compositions of Pluto and Charon. Icarus 246, 82-92.

[14] Di Sisto, Romina P., and Natalia L. Rossignoli. (2020) Centaur and giant planet crossing populations: origin and distribution. Celestial Mechanics and Dynamical Astronomy 132.6, 1-29.

[15] Duffard, R., et al. (2009) Transneptunian objects and Centaurs from light curves. Astronomy & Astrophysics 505.3, 1283-1295.

[16] Graham, Matthew J., et al. (2019) The zwicky transient facility: Science objectives. Publications of the Astronomical Society of the Pacific 131.1001, 078001.

[17] Grundy, W. M., et al. (2018) Pluto′s haze as a surface material. Icarus 314, 232-245.

[18] Guzik, Piotr, et al. (2020) Initial characterization of interstellar comet 2I/Borisov. Nature Astronomy 4.1, 53-57.

[19] Hahn, G., and M. E. Bailey. (1990) Rapid dynamical evolution of giant comet Chiron. Nature 348.6297, 132-136.

[20] Harris, A. W., et al. (1989) Photoelectric observations of asteroids 3, 24, 60, 261, and 863. Icarus 77.1, 171-186.

[21] Hromakina, T. A., et al. (2019) Long-term photometric monitoring of the dwarf planet (136472) Makemake. Astronomy & Astrophysics 625, A46.

[22] Hromakina, T., et al. (2021) Small solar system objects on highly inclined orbits: Surface colours and lifetimes. Astronomy & Astrophysics 647, A71.

[23] Jewitt, David. (2015) Color systematics of comets and related bodies. The Astronomical Journal 150.6, 201.

[24] Jewitt, David, and Jane Luu. (1993) Discovery of the candidate Kuiper belt object 1992 QB 1. Nature, 362.6422, 730-732.

[25] Jewitt, David, and Jane Luu. (2019) Initial characterization of interstellar Comet 2I/2019 Q4 (Borisov). The Astrophysical Journal Letters 886.2, L29.

[26] Khain, Tali, et al. (2020) Dynamical Classification of Trans-Neptunian Objects Detected by the Dark Energy Survey. The Astronomical Journal, 159.4, 133.

[27] Kowal, C. T., and T. Gehrels. (1977) Slow-moving object Kowal. International Astronomical Union Circular 3129, 1.

[28] Lin, H.-W. (2013) 泛星計劃之海王星外天體搜尋與觀測的最初結果. PhD Thesis. National Central University.

[29] Liu, Po-Yen, and Wing-Huen Ip. (2019) An Investigation on the Origin of Centaurs′ Color–Inclination Relation. The Astrophysical Journal 880.2, 71.

[30] Marsset, Michaël, et al. (2019) Col-OSSOS: Color and Inclination Are Correlated throughout the Kuiper Belt. The Astronomical Journal 157.3, 94.

[31] Mazzotta Epifani, E., et al. (2017) The enigmatic colors of the Centaur population. European Planetary Science Congress.

[32] Merlin, F., et al. (2005) Search for surface variations on TNO 47171 and Centaur 32532. Astronomy & Astrophysics, 444.3, 977-982.

[33] Namouni, Fathi, and Maria Helena Moreira Morais. (2020) An interstellar origin for high-inclination Centaurs. Monthly Notices of the Royal Astronomical Society 494.2, 2191-2199.

[34] Nesvorný, David, et al. (2020) OSSOS XX: The Meaning of Kuiper Belt Colors. The Astronomical Journal 160.1, 46.

[35] Noll, Keith S., Alex H. Parker, and William M. Grundy. (2014) All bright cold classical KBOs are binary. AAS/Division for Planetary Sciences Meeting Abstracts# 46. Vol. 46.

[36] Ofek, Eran O. (2012) Sloan digital sky survey observations of Kuiper belt objects: colors and variability. The Astrophysical Journal 749.1, 10.

[37] Oikawa, S., and E. Everhart. (1979) Past and future orbit of 1977 UB, object Chiron. The Astronomical Journal, 84, 134-139.

[38] Ortiz, José Luis, et al. (2017) The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature 550.7675, 219-223.

[39] Oterma, L. (1942) Bureau Central Astronomique de l’Union Astronomique Internationale, 900, 1

[40] Peixinho, Nuno, et al. (2012) The bimodal colors of Centaurs and small Kuiper belt objects. Astronomy & Astrophysics 546, A86.

[41] Peixinho, Nuno, et al. (2020) From Centaurs to comets: 40 Years. The Trans-Neptunian Solar System. Elsevier, 307-329.

[42] Perna, D., et al. (2013) Photometry and taxonomy of trans-Neptunian objects and Centaurs in support of a Herschel key program. Astronomy & Astrophysics 554, A49.

[43] Pravec, Petr, and Alan W. Harris. (2007) Binary asteroid population: 1. Angular momentum content. Icarus 190.1, 250-259.

[44] Protopapa, S., et al. (2017) Pluto′s global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data. Icarus 287, 218-228.

[45] Schwassmann, A., & Wachmann, A. A. (1927) Bureau Central Astronomique de l’Union Astronomique Internationale Observatoire de Copenhague, 171, 1

[46] Sheppard, Scott S. (2010) The colors of extreme outer solar system objects. The Astronomical Journal 139.4, 1394.

[47] Stern, S. A., et al. (2019) Initial results from the New Horizons exploration of 2014 MU69, a small Kuiper Belt object. Science 364.6441.

[48] Tegler, Stephen C., et al. (2012) Ice mineralogy across and into the surfaces of Pluto, Triton, and Eris. The Astrophysical Journal 751.1, 76.

[49] Tegler, Stephen C., W. Romanishin, and S. J. GJ Consolmagno. (2016) Two color populations of Kuiper belt and Centaur objects and the smaller orbital inclinations of red Centaur objects. The Astronomical Journal 152.6, 210.

[50] Thirouin, Audrey, and Scott S. Sheppard. (2019) Light curves and rotational properties of the pristine Cold Classical Kuiper Belt objects. The Astronomical Journal 157.6, 228.

[51] Thirouin, A., et al. (2010) Short-term variability of a sample of 29 trans-Neptunian objects and Centaurs. Astronomy & Astrophysics 522, A93.

[52] Tiscareno, Matthew S., and Renu Malhotra. (2003) The dynamics of known Centaurs. The Astronomical Journal 126.6, 3122.

[53] Tonry, J. L., et al. (2021) The Pan-STARRS1 photometric system. The Astrophysical Journal 750.2, 99.

[54] Volk, Kathryn, and Renu Malhotra. (2013) Do Centaurs preserve their source inclinations?. Icarus 224.1, 66-73.

[55] Waszczak, Adam, et al. (2015) Asteroid light curves from the Palomar Transient Factory survey: rotation periods and phase functions from sparse photometry. The Astronomical Journal 150.3, 75.

[56] Zhou, J. -L., Zhou, L. -Y., and Sun, Y. -S. (2003) Kuiper带小天体动力演化. 云南天文台台刊 1, 76-81.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2021-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明