參考文獻 |
[1] A. Aslam, U. Mehmood, M. H. Arshad, A. Ishfaq, J. Zaheer, A. U. Khan, M. Sufyan, “Dye-sensitized solar cells (DSSCs) as a potential photovoltaic technology for the self-powered internet of things (IoTs) applications”, Solar Energy, 2020, 207, 874-892
[2] C. Fritts, “On the Fritts selenium cell and batteries”, Van Nostrands Engineering Magazine, 1885, 32, 388-395.
[3] M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. H. Ebinger, M. Yoshita, A. W. Y. H. Baillie, "Solar cell efficiency tables (version 56)", Prog. Photovolt. Res. Appl., 2020, 28, 629-638.
[4] N. Sridhar and D. Freeman, “A Study of Dye Sensitized Solar Cells under Indoor and Low Level Outdoor Lighting: Comparison to Organic and Inorganic Thin Film Solar Cells and Methods to Address Maximum Power Point Tracking”, Texas Instruments, 2011, 1-5.
[5] N. Tomara, A. Agrawal, V. S. Dhaka, P. K. Surolia, “Ruthenium complexes based dye sensitized solar cells: Fundamentals and research trends”, Solar Energy, 2020, 207, 59-76.
[6] J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, "Counter electrodes in dye-sensitized solar cells", Chem. Soc. Rev. 2017, 46, 5975-6023.
[7] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, "Dye sensitised zinc oxide: aqueous electrolyte: Platinum photocell", Nature, 1976, 261, 402-403.
[8] B. Regan and M. Grätzel, "A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films" Nature, 1991, 353, 737-740.
[9] S. Yun, P. D. Lund and A. Hinsch, "Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells" Energy Environ. Sci. 2015, 8, 3495-3514.
[10] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa and M. Hanaya, "Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes", Chem. Commun., 2015, 51, 15894-15897.
[11] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngocle, J. D. Decoppet, S. M. Zakeeruddin, J. H. Tsai, C. Grätzel, C. G. Wu and M. Grätzel, "Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells" ACS Nano, 2009, 3, 3103-3109.
[12] S. Mathew, A. Yelia, P. Gao, R. H. Baker, B. F. Curchod, N. A. Astani, I. Tavemelli, U. Rothlisberger, M. K. Nazeeruddin and M. Grätzel, "Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers" Nat. Chem., 2014, 6, 242-247.
[13] W. Shockley, J. H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys., 1961, 32, 510-519.
[14] A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, “Dye-sensitized solar cells”, Chem. Rev., 2010, 110, 6595-6663.
[15] N. Vlachopoulos, P. Liska, J. Augustynski, M. Graetzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am.Chem. Soc., 1988, 110, 1216-1220.
[16] M. K. Nazeeruddin, I. R. A. Kay, R. H. Baker, P. L. E. Mueller, N. Vlachopoulos and M. Grätzel, "Conversion of light to electricity by cis-X2bis (2,2-bipyridyl-4,4′-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes", J. Am. Chem. Soc., 1993, 115, 6382-6390.
[17] M. K. Nazeeruddin, R. H. Baker, P. Liska, and M. Grätzel, "Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell", J. Phys. Chem. B, 2003, 707, 8981-8987;
[18] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, "Combined experimental and DFT-TDDFT computational study of photo-electrochemical cell ruthenium sensitizers", J. Am. Chem. Soc., 2005, 727, 16835-16847.
[19] H. T. Nguyen, H. M. Ta, T. Lund, “Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile, 3-methoxypropionitrile, and 4-tert-butylpyridine” Solar Energy Materials & Solar Cells, 2007, 91, 1934-1942.
[20] J.-F. Yina, M. Velayudhama, D. Bhattacharyaa, H.-C. Linb, K.-L. Lu “Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - a goal toward a bright future”, Coordination Chemistry Reviews, 2012, 256, 3008-3035.
[21] M. Hussain, A. Islam, I. Bedja, R. K. Gupta, L. Han, A. El-Shafei, “A comparative study of Ru(II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? ”, Phys. Chem. Chem. Phys., 2014, 16, 14874-14881.
[22] P.G. Bomben, B.D. Koivisto, C.P. Berlinguette, “Cyclometalated Ru Complexes of Type [RuII(N∧N)2(C∧N)]z Physicochemical Response to Substituents Installed on the Anionic Ligand”, Inorg. Chem., 2010, 49, 4960.
[23] P. G. Bomben, K. C.D. Robson, B. D. Koivisto, C. P. Berlinguette, “Cyclometalated ruthenium chromophores for the dye-sensitized solar cell”, Coordination Chemistry Reviews, 2012, 256, 1438-1450.
[24] Nguyen The Duy, “Thiocyanate-Free Cycloruthenated Sensitizer for Dye-Sensitized Solar Cells”, NCU, doctoral thesis, 2018
[25] T. D. Nguyen, Y. P. Lan, and C. G. Wu, “High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells”, Inorg. Chem., 2018, 57, 1527-1534.
[26] P. G. Bomben, K. C. D. Robson, P. A. Sedach, and C. P. Berlinguette, “On the Viability of Cyclometalated Ru(II) Complexes for Light-Harvesting Applications”, Inorg. Chem., 2009, 48, 9631-9643.
[27] A.V. Medved′ko, V.K. Ivanov, M.A. Kiskin, A.A. Sadovnikov, E.S. Apostolova, V.A. Grinberg, V.V. Emets, A.O. Chizhov, O.M. Nikitin, T.V. Magdesieva, S.A. Kozyukhin, “The design and synthesis of thiophene-based ruthenium(II) complexes as promising sensitizers for dye-sensitized solar cells”, Dyes and Pigments, 2017, 140, 169-178.
[28] M. Wykes,B. M.-Medina and J. Gierschner, “Computational engineering of low band gap copolymers”, Frontiers in Chemistry, 2013, 1, 1-11.
[29] M. Megala and B. J. M. Rajkumar, “DFT Study of Electronic Transfer Properties of Carboxyl and Nitro Substituted Benzene”, AIP Conference Proceedings, 2015, 1665, 110045.
[30] S. Xu, Z. Zhou, H. Fan, L. Ren, F. Liu, X. Zhu and T. P. Russellde, “An electron-rich 2-alkylthieno[3,4-b]thiophene building block with excellent electronic and morphological tunability for high-performance small-molecule solar cells”, J. Mater. Chem. A, 2016, 4, 17354.
[31] F. Dikcal, T. Ozturk and M. E. Cinar, “Fused thiophenes: an overview of the computational investigations”, Org.Commun., 2017, 10, 56-71.
[32] C. S. Ra, S.u Yim, and G. Park, “DFT Studies of Band Gaps of the Fused Thiophene Oligomers”, Bull. Korean Chem. Soc. 2008, 29, 891.
[33] B. L. Hayes “Recent Advances in Microwave Assisted Synthesis.” Aldricchem. Aceta., 2004, 17, 65-76.
[34] D. V. Pogozhev, M. J. Bezdek, P. A. Schauer, and C. P. Berlinguette, “Ruthenium(II) Complexes Bearing a Naphthalimide Fragment: A Modular Dye Platform for the Dye-Sensitized Solar Cell”, Inorg. Chem., 2013, 52, 3001-3006.
[35] Y. Zhou, Q. He, Y3 Yang, H. Zhong, C. He, G. Sang, W. Liu, C. Yang,F. Bai, and Y. Li, “Binaphthyl-Containing Green- and Red-Emitting Molecules for Solution-Processable Organic Light-Emitting Diodes”, Adv. Funct. Mater., 2008, 18, 3299-3306.
[36] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, phys. stat. sol., 1966, 15, 627-637.
[37] E. A Davis, N. F. Mott, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Philos. Mag., 1970, 22, 903-922.
[38] L. G. Oktariza, B. Yuliarto, and Suyatman, “Performance of dye sensitized solar cells (DSSC) using Syngonium Podophyllum Schott as natural dye and counter electrode”, AIP Conference Proceedings, 2018, 020022, 1-5
[39] S. Malladi, S. Yarasi, and G. N. Sastry, “Exploring the potential of iron to replace ruthenium in photosensitizers:a computational study”, J. Mol. Model., 2018, 24, 341.
[40] B. Gunasekaran, R. Sureshbabu, A. K. Mohanakrishnan,G. Chakkaravarthi and V. Manivannan, “Diethyl 3,4-bis(acetoxymethyl)thieno-[2,3-b]thiophene-2,5-dicarboxylate”, Acta Cryst., 2009, 65, 2455.
[41] S. H. Mashraqui, M. Ashraf, H. Hariharasubrahmanian, R. M. Kellogg, A. Meetsma, “Donor–acceptor thieno[2,3-b ]thiophene systems: synthesis and structural study of 3-anisyl-4-pyridyl(pyridinium) thieno[2,3-b ]thiophenes”, Journal of Molecular Structure, 2004, 689, 107-113. |