參考文獻 |
1. Sekitani, T., et al., Flexible organic transistors and circuits with extreme bending stability. Nature materials, 2010. 9(12): p. 1015-1022.
2. Fujimoto, K., et al., High‐Performance, Vertical‐Type Organic Transistors with Built‐In Nanotriode Arrays. Advanced Materials, 2007. 19(4): p. 525-530.
3. Wu, K.-Y., et al., High-performance space-charge-limited transistors with well-ordered nanoporous aluminum base electrode. Applied Physics Letters, 2011. 99(9): p. 185.
4. Yang, C.-Y., et al., Pentacene-based planar-and vertical-type organic thin-film transistor. IEEE transactions on electron devices, 2007. 54(7): p. 1633-1636.
5. Hofmockel, R., et al., High-mobility organic thin-film transistors based on a small-molecule semiconductor deposited in vacuum and by solution shearing. Organic Electronics, 2013. 14(12): p. 3213-3221.
6. Kitamura, M., et al., High-performance fullerene C 60 thin-film transistors operating at low voltages. Applied Physics Letters, 2007. 91(18): p. 183514.
7. Ben-Sasson, A.J. and N. Tessler, Unraveling the physics of vertical organic field effect transistors through nanoscale engineering of a self-assembled transparent electrode. Nano letters, 2012. 12(9): p. 4729-4733.
8. Facchetti, A., et al., n‐type building blocks for organic electronics: a homologous family of fluorocarbon‐substituted thiophene oligomers with high carrier mobility. Advanced Materials, 2003. 15(1): p. 33-38.
9. Yang, S.Y., K. Shin, and C.E. Park, The effect of gate‐dielectric surface energy on pentacene morphology and organic field‐effect transistor characteristics. Advanced functional materials, 2005. 15(11): p. 1806-1814.
10. Chua, L.-L., et al., General observation of n-type field-effect behaviour in organic semiconductors. Nature, 2005. 434(7030): p. 194-199.
11. Ma, L. and Y. Yang, Unique architecture and concept for high-performance organic transistors. Applied physics letters, 2004. 85(21): p. 5084-5086.
12. Ben-Sasson, A.J., et al., Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters, 2009. 95(21): p. 302.
13. Liu, B., et al., Carbon‐nanotube‐enabled vertical field effect and light‐emitting transistors. Advanced Materials, 2008. 20(19): p. 3605-3609.
14. McCarthy, M.A., B. Liu, and A.G. Rinzler, High current, low voltage carbon nanotube enabled vertical organic field effect transistors. Nano letters, 2010. 10(9): p. 3467-3472.
15. Keum, C.-M., et al., Quasi-surface emission in vertical organic light-emitting transistors with network electrode. Optics Express, 2014. 22(12): p. 14750-14756.
16. Ben-Sasson, A.J., et al., Self-assembled metallic nanowire-based vertical organic field-effect transistor. ACS applied materials & interfaces, 2015. 7(4): p. 2149-2152.
17. Kleemann, H., et al., High‐Performance Vertical Organic Transistors. Small, 2013. 9(21): p. 3670-3677.
18. Fujimoto, K., T. Hiroi, and M. Nakamura, Organic static induction transistors with nano-hole arrays fabricated by colloidal lithography. e-Journal of Surface Science and Nanotechnology, 2005. 3: p. 327-331.
19. McCarthy, M., et al., Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science, 2011. 332(6029): p. 570-573.
20. Yu, H., et al., Vertical organic field-effect transistors for integrated optoelectronic applications. ACS applied materials & interfaces, 2016. 8(16): p. 10430-10435.
21. Tang, C.W. and S.A. VanSlyke, Organic electroluminescent diodes. Applied physics letters, 1987. 51(12): p. 913-915.
22. Pope, M., H. Kallmann, and P. Magnante, Electroluminescence in organic crystals. The Journal of Chemical Physics, 1963. 38(8): p. 2042-2043.
23. Paterson, A.F., et al., Small molecule/polymer blend organic transistors with hole mobility exceeding 13 cm2 V− 1 s− 1. Advanced Materials, 2016. 28(35): p. 7791-7798.
24. Andersson, P., et al., Printable all‐organic electrochromic active‐matrix displays. Advanced Functional Materials, 2007. 17(16): p. 3074-3082.
25. Rinzler, A.G., M.A. McCarthy, and B. Liu, Active matrix dilute source enabled vertical organic light emitting transistor. 2015, Google Patents.
26. Meng, H.-F., S.-f. Horng, and Y.-C. Chao, Passive matrix organic light emitting diode display device. 2009, Google Patents.
27. Furno, M., et al. 39.4 L: Late‐News Paper: Vertical Organic Transistors (V‐OFETs) for Truly Flexible AMOLED Displays. in SID Symposium Digest of Technical Papers. 2015. Wiley Online Library.
28. Stutzmann, N., R.H. Friend, and H. Sirringhaus, Self-aligned, vertical-channel, polymer field-effect transistors. Science, 2003. 299(5614): p. 1881-1884.
29. Lee, G., et al., Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway. Journal of Applied Physics, 2017. 121(2): p. 024502.
30. Sheleg, G., et al., Removing the current-limit of vertical organic field effect transistors. Journal of Applied Physics, 2017. 122(19): p. 195502.
31. Tak, Y.-H., et al., Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films, 2002. 411(1): p. 12-16.
32. Sheats, J.R., et al., Organic electroluminescent devices. science, 1996. 273(5277): p. 884-888.
33. Kim, Y., et al., Substrate dependence on the optical properties of Al 2 O 3 films grown by atomic layer deposition. Applied Physics Letters, 1997. 71(25): p. 3604-3606.
34. Hergenrother, J., et al. 50 nm vertical replacement-gate (VRG) nMOSFETs with ALD HfO2 and Al2O3 gate dielectrics. in Technical Digest-International Electron Devices Meeting. 2001. Institute of Electrical and Electronics Engineers Inc.
35. Hwang, C.-S., et al., Vertical channel ZnO thin-film transistors using an atomic layer deposition method. IEEE Electron Device Letters, 2014. 35(3): p. 360-362.
36. Burns, S., et al., Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Scientific reports, 2017. 7(1): p. 1-8.
37. 黃冠儒,“高效率有機/無機覆合式垂直發光電晶體之研究”,國
立中央大學,碩士論文,民國109年。
38. 羅郁仁,“無機/有機異質接面垂直發光電晶體之研究”,國
立中央大學,碩士論文,民國109年。 |