參考文獻 |
1. S. Pastoor, and M. Wöpking, “3-D displays: A review of current technologies,” Displays 17, 100-110 (1997).
2. T. Shibata, “Head mounted display,” Displays 23, 57-64 (2002).
3. N. Cochrane, “VFX-1 Virtual Reality Helmet by Forte,” GameBytes, (1994).
4. Wikipedia, “VFX1 Headgear,” https://en.wikipedia.org/wiki/VFX1_Headgear.
5. W. Kruger, C. A. Bohn, B. Frohlich, H. Schuth, W. Strauss, and G. Wesche, “The responsive workbench: A virtual work environment,” Comput. 28, 42-48 (1995).
6. J. A. Roese, “Liquid crystal stereoscopic viewer,” United States Patent, US4021846 (1977).
7. C. Schurr, “Convergence Rule,” SAGE Publications, (1939).
8. E. Dubois, “A projection method to generate anaglyph stereo images,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings, 1661-1664 (2001).
9. A. J. Woods, and C. R. Harris, “Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses,” Proc. SPIE 7524, Stereoscopic Displays and Applications XXI, 75240Q (2010).
10. Y. Bastanlar, D. Canturk, and H. Karacan, “Effects of color-multiplex stereoscopic view on memory and navigation,” 2007 3DTV Conference, 1-4 (2007).
11. J. Y. Lee, S.-H. Kim, D. W. Moon, and E. S. Lee, “Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CHn stretching vibrational region,” Opt. Express 17, 22281-22295 (2009).
12. K. E. Jachimowicz, and R. S. Gold, “Stereoscopic (3D) projection display using polarized color multiplexing,” Opt. Eng. 29, 838-843 (1990).
13. Y. J. Wu, Y. S. Jeng, P. C. Yeh, C. J. Hu, and W. M. Huang, “20.2: Stereoscopic 3D display using patterned retarder,” SID Symp. Dig. Tech. Papers. 39, 260-263 (2008).
14. G. J. Woodgate, D. Ezra, J. Harrold, N. S. Holliman, G. R. Jones, and R. R. Moseley, “Observer-tracking autostereoscopic 3D display systems,” Proc. SPIE 3012, Stereoscopic Displays and Virtual Reality Systems IV, 187 (1997).
15. D. K. de Boer, M. G. Hiddink, M. Sluijter, O. H. Willemsen, and S. T. de Zwart, “Switchable lenticular based 2D/3D displays,” in Stereoscopic Displays and Virtual Reality Systems XIV(International Society for Optics and Photonics2007), 64900R (2007).
16. Y. H. Tao, Q. H. Wang, J. Gu, W. X. Zhao, and D. H. Li, “Autostereoscopic three-dimensional projector based on two parallax barriers,” Opt. Lett. 34, 3220-3222 (2009).
17. R. Y. Tsai, C. H. Tsai, K. Lee, C. L. Wu, L. C. D. Lin, K. C. Huang, W. L. Hsu, C. S. Wu, C. F. Lu, and J. C. Yang, “Challenge of 3D LCD displays,” Proc. SPIE 7329, 732903 (2009).
18. H. Higuchi, and J. Hamasaki, “Real-time transmission of 3-D images formed by parallax panoramagrams,” Appl. Opt. 17, 3895-3902 (1978).
19. N. A. Dodgson, J. Moore, and S. Lang, “Multi-view autostereoscopic 3D display,” International Broadcasting Convention. Vol. 2. (1999).
20. C. W. Shih, J. H. Wang, C. H. Ting, and Y. P. Huang, “ Floating 3D Image for High Resolution Portable Device Using Integral Photography Theory,” SID Symposium Digest of Technical Papers (2015).
21. F. Yaraş, H. Kang, and L. Onural, “Circular holographic video display system,” Opt. Express 19, 9147-9156 (2011).
22. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTiO3,” Appl. Phys. Lett. 9, 72-74 (1968).
23. F. S. Chen, J. T. LaMacchia, and D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223-225 (1968).
24. F. S. Chen, “Optically induced change of refractive indices in LiNbO3 and LiTaO3,” J. Appl. Phys. 40, 3389-3396 (1969).
25. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals. i. steady state,” Ferroelectr. 22, 949960 (1979).
26. A. Yariv, and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1, 16-18 (1977).
27. J. Feinberg, “Asymmetric self-defocusing of an optical beam from the photorefractive effect,” J. Opt. Soc. Am. 72, 46-51 (1982).
28. J. W. Mark Cronin-Golomb, Baruch Fischer, and Amnon Yariv, “Exact solution of a nonlinear model of four-wave mixing and phase conjugation,” Opt. Lett. 7, 313-315 (1982).
29. P. Yeh, “Two-Wave Mixing in Nonlinear Media,” IEEE J. Quant. Electronics 25, 484-519 (1989).
30. R. A. Fisher, Optical Phase Conjugation (Academic Press, 1983).
31. C. C. Sun, S. Yeh, M. W. Chang, and K. Y. Hsu, “Optimal incident conditions for a Cat-type self-pumped phase-conjugate mirror,” Appl. Opt. 31, 5769-5772 (1992).
32. C. C. Sun, R. H. Tsou, W. Shen, H. H. Chan, J. Y. Chan, and M. W. Chan, “Shearing interferometer with a Kitty self-pumped phase-conjugate mirror,” Appl. Opt. 35, 1815-1819 (1996).
33. B. Wang, C. C. Sun, W. C. Su, and A. E. Chiou, “Shift-tolerance property of an optical double-random phase-encoding encryption system,” Appl. Opt. 39, 4788-4793 (2000).
34. H. F. Yau, H. C. Kung, H. Y. Lee, C. C. Sun, T. C. Chen, C. C. Chang, Y. P. Tong, and J. Chen, “Ordinary polarized phase conjugator using the photovoltaic effect,” Opt. Commun. 184, 257-263 (2000).
35. C. C. Sun, and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
36. C. C. Sun, W. C. Su, B. Wang, and A. E. Chiou, “Lateral shifting sensitivity of a ground glass for holographic encryption and multiplexing using phase conjugate readout algorithm,” Opt. Commun. 191, 209-224 (2001).
37. W. C. Su, Y. W. Chen, Y. Ouyang, C. C. Sun, and B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117-123 (2003).
38. W. C. Su, C. C. Sun, Y. C. Chen, and Y. Ouyang, “Duplication of phase key for random-phase-encrypted volume holograms,” Appl. Opt. 43, 1728-1733 (2004).
39. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110-115 (2008).
40. M. V. Gemert, S. L. Jacques, H. Sterenborg, and W. Star, “Skin optics,” IEEE Transactions on Biomedical Engineering 36, 1146-1154 (1989).
41. M. Cui, and C. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Opt. Express 18, 3444-3455 (2010).
42. I. M. Vellekoop, M. Cui, and C. Yang, “Digital optical phase conjugation of fluorescence in turbid tissue,” Appl. Phys. Lett. 101, 081108 (2012).
43. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012).
44. D. Wang, E. H. Zhou, J. Brake, H. Ruan, M. Jang, and C. Yang, “Focusing through dynamic tissue with millisecond digital optical phase conjugation,” Optica 2, 728-735 (2015).
45. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20, 10583-10590 (2012).
46. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948).
47. E. N. Leith, and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1128 (1962).
48. E. N. Leith, and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377-1381 (1963).
49. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
50. J. Feinberg, “Self-pumped, continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486-488 (1982).
51. A. E. Chiou, T. Y. Chang, and M. Khoshnevisar, “A High-speed photorefractive phase conjugator with wide intensity dynamic range and wide field of view,” OSA Annual Meeting 15, 40 (1990).
52. A. E. Chiou, “Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects,” Proc. IEEE 87, 2074-2085 (1999).
53. I. M. Vellekoop, Controlling the propagation of light in disordered scattering media (2008).
54. C. Gu, and P. Yeh, “Partial phase conjugation, fidelity, and reciprocity,” Opt. Commun. 107, 353-357 (1994).
55. 陳瑋鑫,小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究,國立中央大學光電所碩士論文,中華民國一百零二年。
56. 陳宇恆,基於數位光學相位共軛器浮空於多重鏡面之立體投影之研究,國立中央大學光電所碩士論文,中華民國一百零六年。
57. 劉興晨,利用費奈爾反射結構提升多重鏡面立體投影系統之有效通道數量之研究,國立中央大學光電所碩士論文,中華民國一百零七年。
58. Y. W. Yu, C. C. Sun, X. C. Liu, W. H. Chen, S. Y. Chen, Y. H. Chen, C. S. Ho, C. C. Lin, T. H. Yang, and P. K. Hsieh, “Continuous amplified digital optical phase conjugator for focusing through thick, heavy scattering medium,” OSA Continuum 2, 703-714 (2019). |