博碩士論文 107226059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.221.83.96
姓名 黃彥融(Yan-Rong Huang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高效率雙金屬反射鏡強耦合有機發光二極體之研究
(Hight efficient strongly coupled organic light-emitting based on double metal mirror)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-27以後開放)
摘要(中) 本論文主旨為研究在intra-cavity pumping架構下以橘光熱延遲螢光(Thermally Activated Delayed Fluorescence,TADF)有機發光二極體(OLED)為光子源的電激發有機偏極子元件。intra-cavity pumping以直接激發偏極子能態的方式放光,在選擇材料上可以將高吸收層與發光層分開,其中高吸收層與OLED之間有一空間層隔開,使電流不會與OLED以外的膜層互相影響。
四種不同厚度下反射鏡的強耦合元件,在模擬上皆讓電場於高吸收層和發光層為峰值,以此對強耦合元件進行優化,同時與弱耦合元件比較,發現反射鏡的反射率對元件耦合與效率有極大的影響,太低的反射率會使元件的發光模態趨近光子模態而非設計的下支能態,從反射鏡的變化我們做出效率高且能態符合設計的強耦合元件。
本論文有機偏極子元件以DEDOC作為高吸收強耦合材料與TXO-TPA橘光OLED作為光子源,我們以生命週期(lifetime)較長、效率較高的熱延遲螢光材料,實驗證明效率較高的OLED對元件的效率有相當明顯的影響,在優化元件後強耦合元件有190 meV的拉比分裂及5 %的外部量子效率,為目前電激發有機偏極子元件最高的發光效率。此一結果有助於未來高效率電激發有機偏極子元件在材料選擇上有更大的發揮空間之依據,進一步提供電激發偏極子雷射發展的基礎。
摘要(英) In this thesis, an electrically pumped organic polariton device embedded with an orange thermally activated delayed fluorescence (TADF) organic light-emitting diode (OLED) as a photon source based on an intra-cavity pumping is studied. Intra-cavity pumping illuminates by directly pumping the energy states of the polarons. The high absorption layer can be separated from the illuminating layer by the selection of materials. There is a layer between the high absorption layer and the OLED, such that the current will not influence other layers except for the OLED.
In a simulation, the strong coupling devices of the reflectors with four different kinds of thicknesses make the electric field peak in the high absorption layer and the light-emitting layer. It optimizes the strong coupling devices. Simultaneously, compared with the weak coupling devices, the reflectivity of the reflector is found that it has a great impact on the coupling and efficiency of the devices. A reflectivity that is too low will make the device′s illuminating mode approach the photon mode instead of the designed lower polariton. According to the reflectors′ change, the strong coupling device with high efficiency and the energy state meeting with the design is made.
In this thesis, the organic polarizer device uses the DEDOC as the high absorption and strong coupling material and uses the TXO-TPA orange OLED as the photon source. The TADF materials with a longer lifetime and higher efficiency show that the OLEDs with higher efficiency significantly impact the device′s efficiency. After optimizing the device, the strong coupling device has a rabi-splitting of 180 meV and 5% external quantum efficiency. They are currently the highest luminous efficiency of electrically pumped organic polarizer devices. This result will help the electrically pumped organic polaron devices with high-efficiency have a much greater benefit for selecting the materials in the future, thereby providing the basis for the development of electrically pumped polaron lasers.
關鍵字(中) ★ 偏極子
★ 強耦合
★ 熱延遲螢光
關鍵字(英) ★ Polariton
★ Strong coupling
★ TADF
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
第一章 緒論 1
1-1 名詞解釋 1
1-1-1 激子(Exciton) 1
1-1-2 偏極子(Polariton) 2
1-1-3自聚集單分子薄膜 2
1-2 有機發光二極體 3
1-3 有機偏極子雷射發展與物理機制 3
1-3-1 Non-resonant pumping 4
1-3-2 Intracavity pumping 7
1-4 研究動機 9
第二章 基本原理 10
2-1 有機發光二極體理論 10
2-1-1 有機發光二極體結構 10
2-1-2 載子注入與傳輸機制 11
2-1-3 主體(Host)與客體(Guest)間的能量轉移(Host-guest transfer) 13
2-1-4 量子效率(Quant Efficiency) 14
2-1-5 熱延遲螢光(Thermally Activated Delayed Fluorescence) 15
2-2 多層膜矩陣設計理論 16
2-2-1 正向入射 16
2-2-2 斜向入射 17
2-2-3 多層膜的堆疊 18
2-3 電場分布 19
2-3-1 導納軌跡 19
2-3-2 電場分布 20
2-4 微共振腔之光場模態與色散關係 21
2-5 微共振腔中光子與激子的強耦合 23
第三章 實驗方式與步驟 27
3-1製程與儀器介紹 27
3-1-1 原子層沉積(Atomic Layer Deposition) 27
3-1-2離子束濺鍍法(Ion Beam Sputtering Deposition,IBSD) 28
3-1-3 旋轉塗佈機 28
3-1-4 熱蒸鍍系統(Thermal Evaporation Coater) 28
3-1-5 手套箱(Glove box) 30
3-2量測儀器 30
3-2-1 半導體參數分析儀(SPA)及Photodiode 31
3-2-2 光纖量測系統 31
3-2-3 即時多角度光譜量測系統 32
3-2-4 紫外/可見/紅外光光譜儀 34
3-2-5 積分球光學檢測儀(Integrating Sphere) 35
3-3 實驗步驟 36
3-3-1 基板清洗 36
3-3-2 強耦合製程步驟 36
第四章 實驗結果與分析 39
4-1 J-aggregate高吸收強耦合材料DEDOC 39
4-2 超薄金屬 40
4-3 熱延遲螢光光子源 41
4-4 光學薄膜設計 45
4-5 共振腔元件量測結果與討論 48
4-5-1 30nm-Ag強弱耦合與Au-OLED元件 48
4-5-2 不同厚度銀反射鏡的強耦合元件 51
第五章 結論與未來展望 55
參考文獻 56
參考文獻 [1] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, p. 3314, 1992.
[2] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of Modern Physics, vol. 82, p. 1489, 2010.
[3] F. Würthner, T. E. Kaiser, and C. R. Saha‐Möller, "J‐aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials," Angewandte Chemie International Edition, vol. 50, pp. 3376-3410, 2011.
[4] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, pp. 2042-2043, 1963.
[5] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998.
[6] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, p. 3316, 1999.
[7] N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, et al., "Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED," Advanced Optical Materials, vol. 1, pp. 503-509, 2013.
[8] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, p. 121303, 2013.
[9] D. G. Lidzey and D. M. Coles, "Strong Coupling in Organic and Hybrid-Semiconductor Microcavity Structures," in Organic and Hybrid Photonic Crystals, ed: Springer, 2015, pp. 243-273.
[10] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, p. 033305, 2010.
[11] G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, "Lasing through a strongly-coupled mode by intra-cavity pumping," Optics Express, vol. 21, pp. 12122-12128, 2013.
[12] M. Y. Wong and E. Zysman‐Colman, "Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes," Advanced Materials, vol. 29, p. 1605444, 2017.
[13] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, pp. 234-238, 2012.
[14] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers," Applied Physics Letters, vol. 91, p. 253504, 2007.
[15] H. Lee, S. W. Cho, K. Han, P. E. Jeon, C.-N. Whang, K. Jeong, et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, p. 279, 2008.
[16] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, pp. 152-154, 1997.
[17] S. Shaheen, G. Jabbour, M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, et al., "Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode," Journal of applied physics, vol. 84, pp. 2324-2327, 1998.
[18] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, p. 967, 1965.
[19] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala, et al., "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance," The Journal of Physical Chemistry C, vol. 111, pp. 17404-17408, 2007.
[20] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 173-181, 1928.
[21] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, pp. 23-29, 1994.
[22] T. A. Mai and B. Richerzhagen, "53.3: Manufacturing of 4th Generation OLED Masks with the Laser MicroJet® Technology," in SID Symposium Digest of Technical Papers, 2007, pp. 1596-1598.
[23] 陳金鑫 and 黃孝文, OLED: 有機電激發光材料與元件: 五南圖書出版股份有限公司, 2005.
[24] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, "Origin of enhanced hole injection in inverted organic devices with electron accepting interlayer," Advanced Functional Materials, vol. 22, pp. 3261-3266, 2012.
[25] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, p. 123104, 2008.
[26] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[27] S. Hayashi, Y. Ishigaki, and M. Fujii, "Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities," Physical Review B, vol. 86, p. 045408, 2012.
[28] D. Comoretto, Organic and hybrid photonic crystals: Springer, 2015.
[29] R. Holmes and S. Forrest, "Strong exciton–photon coupling in organic materials," Organic Electronics, vol. 8, pp. 77-93, 2007.
[30] R. W. Johnson, A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: from fundamentals to applications," Materials today, vol. 17, pp. 236-246, 2014.
[31] Y.-G. Bi, J. Feng, J.-H. Ji, Y. Chen, Y.-S. Liu, Y.-F. Li, et al., "Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices," Nanoscale, vol. 8, pp. 10010-10015, 2016.
[32] X.-L. Ou, J. Feng, M. Xu, and H.-B. Sun, "Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes," Optics Letters, vol. 42, pp. 1958-1961, 2017.
[33] Y.-S. Liu, S. Guo, F.-S. Yi, J. Feng, and H.-B. Sun, "Highly flexible organic–inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode," Optics Letters, vol. 43, pp. 5524-5527, 2018.
[34] H.-S. Wei, C.-C. Jaing, Y.-T. Chen, C.-C. Lin, C.-W. Cheng, C.-H. Chan, et al., "Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities," Optics express, vol. 21, pp. 21365-21373, 2013.
[35] J.-F. Chang, F.-C. Chien, C.-W. Cheng, C.-C. Lin, Y.-H. Lu, H.-S. Wei, et al., "Process dependence of morphology and microstructure of cyanine dye J-aggregate film: correlation with absorption, photo-and electroluminescence properties," Optics Express, vol. 22, pp. 29388-29397, 2014.
[36] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, et al., "Novel thermally activated delayed fluorescence materials–thioxanthone derivatives and their applications for highly efficient OLEDs," Advanced Materials, vol. 26, pp. 5198-5204, 2014.
[37] H. Sun, Z. Hu, C. Zhong, X. Chen, Z. Sun, and J.-L. Brédas, "Impact of dielectric constant on the singlet–triplet gap in thermally activated delayed fluorescence materials," The Journal of Physical Chemistry Letters, vol. 8, pp. 2393-2398, 2017.
[38] J.-F. Chang, T.-Y. Lin, C.-F. Hsu, S.-Y. Chen, S.-Y. Hong, G.-S. Ciou, et al., "Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture," Optics Express, vol. 28, pp. 39781-39789, 2020.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明