參考文獻 |
[1] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Physical Review Letters, vol. 69, p. 3314, 1992.
[2] H. Deng, H. Haug, and Y. Yamamoto, "Exciton-polariton bose-einstein condensation," Reviews of Modern Physics, vol. 82, p. 1489, 2010.
[3] F. Würthner, T. E. Kaiser, and C. R. Saha‐Möller, "J‐aggregates: from serendipitous discovery to supramolecular engineering of functional dye materials," Angewandte Chemie International Edition, vol. 50, pp. 3376-3410, 2011.
[4] M. Pope, H. Kallmann, and P. Magnante, "Electroluminescence in organic crystals," The Journal of Chemical Physics, vol. 38, pp. 2042-2043, 1963.
[5] D. G. Lidzey, D. Bradley, M. Skolnick, T. Virgili, S. Walker, and D. Whittaker, "Strong exciton–photon coupling in an organic semiconductor microcavity," Nature, vol. 395, pp. 53-55, 1998.
[6] D. Lidzey, D. Bradley, T. Virgili, A. Armitage, M. Skolnick, and S. Walker, "Room temperature polariton emission from strongly coupled organic semiconductor microcavities," Physical review letters, vol. 82, p. 3316, 1999.
[7] N. Christogiannis, N. Somaschi, P. Michetti, D. M. Coles, P. G. Savvidis, P. G. Lagoudakis, et al., "Characterizing the electroluminescence emission from a strongly coupled organic semiconductor microcavity LED," Advanced Optical Materials, vol. 1, pp. 503-509, 2013.
[8] D. M. Coles, R. T. Grant, D. G. Lidzey, C. Clark, and P. G. Lagoudakis, "Imaging the polariton relaxation bottleneck in strongly coupled organic semiconductor microcavities," Physical Review B, vol. 88, p. 121303, 2013.
[9] D. G. Lidzey and D. M. Coles, "Strong Coupling in Organic and Hybrid-Semiconductor Microcavity Structures," in Organic and Hybrid Photonic Crystals, ed: Springer, 2015, pp. 243-273.
[10] M. S. Bradley and V. Bulović, "Intracavity optical pumping of J-aggregate microcavity exciton polaritons," Physical Review B, vol. 82, p. 033305, 2010.
[11] G. M. Akselrod, E. R. Young, M. S. Bradley, and V. Bulović, "Lasing through a strongly-coupled mode by intra-cavity pumping," Optics Express, vol. 21, pp. 12122-12128, 2013.
[12] M. Y. Wong and E. Zysman‐Colman, "Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes," Advanced Materials, vol. 29, p. 1605444, 2017.
[13] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, and C. Adachi, "Highly efficient organic light-emitting diodes from delayed fluorescence," Nature, vol. 492, pp. 234-238, 2012.
[14] T. Matsushima, Y. Kinoshita, and H. Murata, "Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole-transporting layers," Applied Physics Letters, vol. 91, p. 253504, 2007.
[15] H. Lee, S. W. Cho, K. Han, P. E. Jeon, C.-N. Whang, K. Jeong, et al., "The origin of the hole injection improvements at indium tin oxide/molybdenum trioxide/N, N′-bis (1-naphthyl)-N, N′-diphenyl-1, 1′-biphenyl-4, 4′-diamine interfaces," Applied Physics Letters, vol. 93, p. 279, 2008.
[16] L. Hung, C. W. Tang, and M. G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Applied Physics Letters, vol. 70, pp. 152-154, 1997.
[17] S. Shaheen, G. Jabbour, M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, et al., "Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode," Journal of applied physics, vol. 84, pp. 2324-2327, 1998.
[18] J. Simmons, "Richardson-Schottky effect in solids," Physical Review Letters, vol. 15, p. 967, 1965.
[19] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala, et al., "The Relation between the Electrical, Chemical, and Morphological Properties of Indium− Tin Oxide Layers and Double-Layer Light-Emitting Diode Performance," The Journal of Physical Chemistry C, vol. 111, pp. 17404-17408, 2007.
[20] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 119, pp. 173-181, 1928.
[21] A. J. Heeger, I. Parker, and Y. Yang, "Carrier injection into semiconducting polymers: Fowler-Nordheim field-emission tunneling," Synthetic Metals, vol. 67, pp. 23-29, 1994.
[22] T. A. Mai and B. Richerzhagen, "53.3: Manufacturing of 4th Generation OLED Masks with the Laser MicroJet® Technology," in SID Symposium Digest of Technical Papers, 2007, pp. 1596-1598.
[23] 陳金鑫 and 黃孝文, OLED: 有機電激發光材料與元件: 五南圖書出版股份有限公司, 2005.
[24] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, "Origin of enhanced hole injection in inverted organic devices with electron accepting interlayer," Advanced Functional Materials, vol. 22, pp. 3261-3266, 2012.
[25] D. Yokoyama, M. Moriwake, and C. Adachi, "Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films," Journal of Applied Physics, vol. 103, p. 123104, 2008.
[26] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
[27] S. Hayashi, Y. Ishigaki, and M. Fujii, "Plasmonic effects on strong exciton-photon coupling in metal-insulator-metal microcavities," Physical Review B, vol. 86, p. 045408, 2012.
[28] D. Comoretto, Organic and hybrid photonic crystals: Springer, 2015.
[29] R. Holmes and S. Forrest, "Strong exciton–photon coupling in organic materials," Organic Electronics, vol. 8, pp. 77-93, 2007.
[30] R. W. Johnson, A. Hultqvist, and S. F. Bent, "A brief review of atomic layer deposition: from fundamentals to applications," Materials today, vol. 17, pp. 236-246, 2014.
[31] Y.-G. Bi, J. Feng, J.-H. Ji, Y. Chen, Y.-S. Liu, Y.-F. Li, et al., "Ultrathin and ultrasmooth Au films as transparent electrodes in ITO-free organic light-emitting devices," Nanoscale, vol. 8, pp. 10010-10015, 2016.
[32] X.-L. Ou, J. Feng, M. Xu, and H.-B. Sun, "Semitransparent and flexible perovskite solar cell with high visible transmittance based on ultrathin metallic electrodes," Optics Letters, vol. 42, pp. 1958-1961, 2017.
[33] Y.-S. Liu, S. Guo, F.-S. Yi, J. Feng, and H.-B. Sun, "Highly flexible organic–inorganic hybrid perovskite light-emitting devices based on an ultrathin Au electrode," Optics Letters, vol. 43, pp. 5524-5527, 2018.
[34] H.-S. Wei, C.-C. Jaing, Y.-T. Chen, C.-C. Lin, C.-W. Cheng, C.-H. Chan, et al., "Adjustable exciton-photon coupling with giant Rabi-splitting using layer-by-layer J-aggregate thin films in all-metal mirror microcavities," Optics express, vol. 21, pp. 21365-21373, 2013.
[35] J.-F. Chang, F.-C. Chien, C.-W. Cheng, C.-C. Lin, Y.-H. Lu, H.-S. Wei, et al., "Process dependence of morphology and microstructure of cyanine dye J-aggregate film: correlation with absorption, photo-and electroluminescence properties," Optics Express, vol. 22, pp. 29388-29397, 2014.
[36] H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, et al., "Novel thermally activated delayed fluorescence materials–thioxanthone derivatives and their applications for highly efficient OLEDs," Advanced Materials, vol. 26, pp. 5198-5204, 2014.
[37] H. Sun, Z. Hu, C. Zhong, X. Chen, Z. Sun, and J.-L. Brédas, "Impact of dielectric constant on the singlet–triplet gap in thermally activated delayed fluorescence materials," The Journal of Physical Chemistry Letters, vol. 8, pp. 2393-2398, 2017.
[38] J.-F. Chang, T.-Y. Lin, C.-F. Hsu, S.-Y. Chen, S.-Y. Hong, G.-S. Ciou, et al., "Development of a highly efficient, strongly coupled organic light-emitting diode based on intracavity pumping architecture," Optics Express, vol. 28, pp. 39781-39789, 2020. |