博碩士論文 107226061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:18.119.103.132
姓名 楊脩安(Siou-An Yang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以基態耗損抑制雙光子螢光訊號
(Suppression of Two-Photon Fluorescence Signals by Ground-state Depletion)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-7-4以後開放)
摘要(中) 結構照明顯微鏡是使影像產生週期性的條紋,再藉由數學運算獲得更高頻率的空間資訊,提升光學系統的橫向解析度,達成超過繞射極限的限制,然而在過去的文獻中,結構照明顯微鏡較少被應用在雙光子螢光影像上。
雙光子螢光顯微鏡相較於單光子螢光顯微鏡,激發光對樣本有較好的穿透深度,對樣本產生較少的破壞,並且光學切片的能力較高,擁有較好的縱向解析度,然而根據繞射極限,雙光子螢光顯微鏡在橫向解析度遜色於單光子螢光顯微鏡。
想要將結構照明顯微鏡應用在雙光子螢光顯微鏡上,需要對雙光子螢光影像進行空間調制,形成條紋,若是基態耗損原 理可以讓螢光分子進入暗態而不發出雙光子螢光,就可以透過調制耗損光的方式,在雙光子螢光影像上形成條紋。
基態耗損原理尚未被用來抑制雙光子螢光訊號,本論文選擇了4種樣本進行實驗,樣本分別為R6G-PVA、Eosin Y-PVA、螢光小球F8800和F8801。首先,進行抑制單光子螢光實驗,並以過去的文獻做參考,證實樣本擁有暗態而可以抑制單光子螢光訊號。接著進行抑制雙光子螢光實驗,觀察雙光子螢光是否可以被耗損光(綠光雷射,波長為532 nm)抑制,並比較4種樣本 的抑制程度。為了應用在雙光子結構照明,以實驗量測了雙光子螢光訊號的訊雜比、積分時間對抑制雙光子螢光的影響、耗損光以及激發光(紅外光雷射,波長為1064 nm)之間的間隔對抑制雙光子螢光的影響。
摘要(英) Structured illumination microscopy produces periodic fringes in the image, and then obtains higher-frequency spatial information through mathematical operations, improves the lateral resolution of the optical system, and exceeds the limit of diffraction. However, in the past literature, structured illumination microscopy is rarely used for two-photon fluorescence imaging.
Compared with the single-photon fluorescence microscope, the excitation laser has a better penetration depth to the sample, causing less damage to the sample, and has a higher optical sectioning ability and better longitudinal resolution. However, according to the diffraction limit, two-photon fluorescence microscopy is inferior to single-photon fluorescence microscopy in lateral resolution.
To apply the structured illumination microscope to the two-photon fluorescence microscope, the two-photon fluorescence image needs to be spatially modulated to form stripes. If the ground-state depletion principle can make the fluorescent molecules enter the dark state without emitting two-photon fluorescence, then Stripes can be formed on two-photon fluorescent images by modulating the depletion laser.
The ground-state depletion principle has not been used to suppress the two-photon fluorescent signal. This paper selected four samples for experiments, namely R6G-PVA, Eosin Y-PVA, fluorescent beads F8800 and F8801. First, the experiment of suppressing single-photon fluorescence was carried out, and the past literature was used as a reference to confirm that the sample has a dark state and can suppress the single-photon fluorescence signal. Then, the experiment of suppressing single-photon fluorescence was carried out to observe whether the two-photon fluorescence could be suppressed by depletion laser (Green laser, wavelength of 532 nm), and compare the degree of suppression of the four samples. In order to apply to two-photon structure illumination, the signal-to-noise ratio of the two-photon fluorescent signal, influence of integration time on two-photon fluorescence, the effect of the interval time between the depletion laser and the excitation laser (Infrared laser, wavelength of 1064 nm) on the suppression of two-photon fluorescence.
關鍵字(中) ★ 基態耗損
★ 雙光子螢光
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 文獻回顧與探討 1
1.1.1 光學顯微鏡 1
1.1.2 超解析度顯微鏡 3
1.2 研究動機與目的 6
第二章 實驗原理 7
2.1 螢光訊號 7
2.2 雙光子螢光訊號 8
2.3 基態耗損原理(Ground state depletion) 9
第三章 實驗架構與方法 13
3.1 抑制單光子螢光系統 13
3.2 抑制雙光子螢光系統 16
3.3 樣本配置 21
第四章 實驗結果 25
4.1 抑制單光子螢光 25
4.2 抑制雙光子螢光 36
4.2.1 在不同耗損光功率下,抑制雙光子螢光訊號的程度 36
4.2.2 間隔時間對抑制雙光子螢光訊號程度的影響 44
第五章 結論 49
參考文獻 50
參考文獻 [1] Y. Li, W. A. Dick, and O. H. Tuovinen, "Fluorescence microscopy for visualization of soil microorganisms—a review," Biology and fertility of soils 39, 301-311 (2004).
[2] D. Errampalli, K. Leung, M. Cassidy, M. Kostrzynska, M. Blears, H. Lee, and J. Trevors, "Applications of the green fluorescent protein as a molecular marker in environmental microorganisms," Journal of Microbiological Methods 35, 187-199 (1999).
[3] E. M. Goldys, Fluorescence applications in biotechnology and life sciences (John Wiley & Sons, 2009).
[4] F. Kamp, N. Exner, A. K. Lutz, N. Wender, J. Hegermann, B. Brunner, B. Nuscher, T. Bartels, A. Giese, and K. Beyer, "Inhibition of mitochondrial fusion by α‐synuclein is rescued by PINK1, Parkin and DJ‐1," The EMBO journal 29, 3571-3589 (2010).
[5] J. N. Stojanović, S. A. Radosavljević, R. D. Tošović, A. M. Pačevski, A. S. Radosavljević-Mihajlović, V. D. Kašić, and N. S. Vuković, "A review of the Pb-Zn-Cu-Ag-Bi-W polymetallic ore from the Rudnik orefield, Central Serbia," Geoloski anali Balkanskoga poluostrva 79, 47-69 (2018).
[6] S. Dai, J. C. Hower, C. R. Ward, W. Guo, H. Song, J. M. O′Keefe, P. Xie, M. M. Hood, and X. Yan, "Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau," International Journal of Coal Geology 144, 23-47 (2015).
[7] K. K. Ghosh, L. D. Burns, E. D. Cocker, A. Nimmerjahn, Y. Ziv, A. E. Gamal, and M. J. Schnitzer, "Miniaturized integration of a fluorescence microscope," Nature methods 8, 871-878 (2011).
[8] G. Rice, "Fluorescent Microscopy," https://serc.carleton.edu/microbelife/research_methods/microscopy/fluromic.html.
[9] A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto, R. R. Anderson, K. Schwarzenberger, and R. C. Young, "Introduction to confocal microscopy," Journal of Investigative Dermatology 132, 1-5 (2012).
[10] T. Wilson, Confocal microscopy (Academic press London, 1990).
[11] J. Pawley, Handbook of biological confocal microscopy (Springer Science & Business Media, 2006).
[12] K. Svoboda, and R. Yasuda, "Principles of two-photon excitation microscopy and its applications to neuroscience," Neuron 50, 823-839 (2006).
[13] P. T. So, C. Y. Dong, B. R. Masters, and K. M. Berland, "Two-photon excitation fluorescence microscopy," Annual review of biomedical engineering 2, 399-429 (2000).
[14] E. J. Sánchez, L. Novotny, and X. S. Xie, "Near-field fluorescence microscopy based on two-photon excitation with metal tips," Physical Review Letters 82, 4014 (1999).
[15] R. Y. Tsien, and A. Waggoner, "Fluorophores for confocal microscopy," in Handbook of biological confocal microscopy(Springer, 1995), pp. 267-279.
[16] G. Cox, and C. J. Sheppard, "Practical limits of resolution in confocal and non‐linear microscopy," Microscopy research and technique 63, 18-22 (2004).
[17] J. A. Squier, M. Müller, G. Brakenhoff, and K. R. Wilson, "Third harmonic generation microscopy," Optics express 3, 315-324 (1998).
[18] X. Chen, O. Nadiarynkh, S. Plotnikov, and P. J. Campagnola, "Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure," Nature protocols 7, 654-669 (2012).
[19] D. Yelin, and Y. Silberberg, "Laser scanning third-harmonic-generation microscopy in biology," Optics express 5, 169-175 (1999).
[20] B. Huang, M. Bates, and X. Zhuang, "Super resolution fluorescence microscopy," Annual review of biochemistry 78, 993 (2009).
[21] L. Schermelleh, R. Heintzmann, and H. Leonhardt, "A guide to super-resolution fluorescence microscopy," Journal of Cell Biology 190, 165-175 (2010).
[22] B. O. Leung, and K. C. Chou, "Review of super-resolution fluorescence microscopy for biology," Applied spectroscopy 65, 967-980 (2011).
[23] J. Vangindertael, R. Camacho, W. Sempels, H. Mizuno, P. Dedecker, and K. Janssen, "An introduction to optical super-resolution microscopy for the adventurous biologist," Methods and applications in fluorescence 6, 022003 (2018).
[24] M. G. Gustafsson, "Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy," Journal of microscopy 198, 82-87 (2000).
[25] R. Heintzmann, and T. Huser, "Super-resolution structured illumination microscopy," Chemical reviews 117, 13890-13908 (2017).
[26] H. Blom, and J. Widengren, "Stimulated emission depletion microscopy," Chemical reviews 117, 7377-7427 (2017).
[27] S. W. Hell, and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy," Optics letters 19, 780-782 (1994).
[28] E. Auksorius, B. R. Boruah, C. Dunsby, P. M. Lanigan, G. Kennedy, M. A. Neil, and P. M. French, "Stimulated emission depletion microscopy with a supercontinuum source and fluorescence lifetime imaging," Optics letters 33, 113-115 (2008).
[29] J. Fischer, and M. Wegener, "Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy," Optical Materials Express 1, 614-624 (2011).
[30] S. Bretschneider, "Ground State Depletion Fluorescence Microscopy," (2008).
[31] J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, "Fluorescence nanoscopy by ground-state depletion and single-molecule return," Nature methods 5, 943-945 (2008).
[32] K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, "Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution," Nano letters 10, 3199-3203 (2010).
[33] S. Chong, W. Min, and X. S. Xie, "Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature," The journal of physical chemistry letters 1, 3316-3322 (2010).
[34] EZEISS, "Education in Microscopy and Digital Imaging," https://zeiss-campus.magnet.fsu.edu/articles/superresolution/supersim.html.
[35] G. Paës, A. Habrant, and C. Terryn, "Fluorescent nano-probes to image plant cell walls by super-resolution STED microscopy," Plants 7, 11 (2018).
[36] lecia, "3D Localization Microscope Leica SR GSD 3D," https://www.leica-microsystems.com/solutions/life-science/neuroscience/leica-sr-gsd-3d/downloads/.
[37] H. Wang, C. J. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, "Fighting against diffraction: apodization and near field diffraction structures," Laser & Photonics Reviews 6, 354-392 (2012).
[38] OLYMPUS, "Jablonski Energy Diagram," https://www.olympus-lifescience.com/zh/microscope-resource/primer/java/jablonski/jabintro/.
[39] V. Sun, "Dissecting Two-Photon Microscopy," http://www.signaltonoisemag.com/allarticles/2018/9/17/dissecting-two-photon-microscopy.
[40] 洪瑞廷, "基態耗損結構照明三倍頻顯微術," https://hdl.handle.net/11296/svqq77.
[41] M. Yamashita, A. Kuniyasu, and H. Kashiwagi, "Intersystem crossing rates and saturation parameters in the triplet state for rhodamine, fluorescein, and acridine dyes," The Journal of Chemical Physics 66, 986-988 (1977).
[42] S. Prahl, "Rhodamine 6G," https://omlc.org/spectra/PhotochemCAD/html/083.html.
[43] S. Prahl, "Eosin Y," https://omlc.org/spectra/PhotochemCAD/html/061.html.
[44] T. Fisher, "FluoSpheres™ Carboxylate-Modified Microspheres 產品號碼: F8800," https://www.thermofisher.com/order/catalog/product/F8800.
[45] T. Fisher, "FluoSpheres™ Carboxylate-Modified Microspheres 產品號碼: F8801," https://www.thermofisher.com/order/catalog/product/F8801.
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2022-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明