博碩士論文 107282006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:139 、訪客IP:52.15.253.149
姓名 吳冠廷(Wu, Kuan-Ting)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Photo-induced Force Nanospectroscopy of Infrared Surface Modes, Application to Silicon Carbide)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討了光誘導力顯微鏡 ( PiFM ) 下的奈米光譜學,特別著重其在紅外線表面模態的探測,以及其在碳化矽(SiC)上的應用。論文首先介紹並比較PiFM和其他基於掃描式探針的紅外線奈米光譜技術,如散射式近場光學顯微鏡 ( s-SNOM ) 和光熱誘導共振顯微鏡 ( PTIR ),進而闡釋常見的探針增益紅外線表面模態,以及其中的物理。在簡要的介紹SiC基本材料性質後,我們探討了在不同SiC樣品上測得的PiF光譜。分析顯示,數值模擬其光譜需要結合探針-樣品間的等效極化率和材料的吸收光譜。而模擬結晶度差、高摻雜的SiC表面PiF光譜時需要加入額外阻尼項。進一步研究揭示測量到的光誘導力為吸引力,並且凸顯表面汙染吸附層對於PiF訊號的影響是不可忽視的。

此論文亦展示PiFM在奈米尺度下表徵SiC樣品表面特性的實用性,特別是通過評估表面聲子極化子(SPhP)模態在不同材料條件下(如再結晶、摻雜和應變),不同的行為。在不同的樣品中,我們檢測到SiC的SPhP有類似於其LO聲子的行為,且具有更高靈敏度。此外,PiFM在SiC薄膜層-基板邊界、SiC微電子晶體和SiC表面凹陷中取得了高分辨率圖像,凸顯此探測技術有希望在監測碳化矽或其他半導體材料奈米結構或微電子元件中獲得廣泛的應用。
摘要(英) This thesis explores the field of nano-spectroscopy using infrared photo-induced force microscopy (PiFM) in the presence of polaritonic surface modes. Silicon carbide (SiC), known for its significant infrared response in scattering-type scanning near-field optical microscopy (s-SNOM), is the primary material analyzed here. After comparing infrared local probe nano-spectroscopy techniques and providing a brief introduction to SiC, we obtain near-field spectra on layers of varying qualities. The analysis of these spectra suggests the use of a model combining an effective polarizability related to the probe-sample interaction and the term of loss in the material′s dielectric function. However, the addition of additional damping to better model the data appears necessary. The study demonstrates the presence of attractive photo-induced forces and suggests a significant role of contamination layers in the proper transmission of the signal.

We highlight the technique′s ability to characterize the surface properties of SiC, particularly through the sensitivity of the technique to surface phonon-polaritons (SPhP), revealing significant variations depending on crystallinity, doping, or mechanical constraints. The variations in the polariton peak are quite analogous to those obtained by Raman spectroscopy, but with significantly greater sensitivity and resolution. The employed method notably provides spatially highly resolved images of nano-indented samples and SiC-based microelectronic components, showing that it is an useful and promising local probe technique in monitoring the SiC-based nano-structures or microelectronic devices.
關鍵字(中) ★ 近場顯微鏡
★ 紅外光譜
★ 聲子
★ 奈米結構材料
★ 碳化矽
關鍵字(英) ★ near-field microscopy
★ infrared spectroscopy
★ phonons
★ nanostructured materials
★ Silicon Carbide
論文目次 Contents
General Introduction 1
1 Surface mode analysis in infrared nanoscopy 7
1.1 Blooming of IR nano-spectroscopic of scan probe methods . . . . 8
1.1.1 Scattering-type scanning near-field optical microscopy (s-SNOM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Photo-thermal induced resonance microscopy (PTIR) . . . 13
1.1.3 Photo-induced force microscopy (PiFM) . . . . . . . . . . 15
1.2 Infrared Surface modes and tip-sample interaction . . . . . . . . . 18
1.2.1 Surface Plasmon and Phonon Polariton modes . . . . . . . 18
1.2.2 Optical tip-sample interaction . . . . . . . . . . . . . . . . 20
1.2.3 Photothermal mode of operation . . . . . . . . . . . . . . 27
1.3 State of the art and brief comparison . . . . . . . . . . . . . . . . 31
1.3.1 Literature highlights . . . . . . . . . . . . . . . . . . . . . 31
1.3.2 Comparison attempt . . . . . . . . . . . . . . . . . . . . . 35
2 IR spectroscopy and spectrum modelling of SiC 39
2.1 IR response of SiC material . . . . . . . . . . . . . . . . . . . . . 40
2.1.1 Introduction to SiC . . . . . . . . . . . . . . . . . . . . . . 40
2.1.2 Far field IR analysis and dielectric function of 4H-SiC . . . 45
2.2 PiFM system operation . . . . . . . . . . . . . . . . . . . . . . . . 49
2.3 PiF near-field spectra obtained on 4H-SiC . . . . . . . . . . . . . 50
2.4 Proposed PiF model based on tip-enhanced absorption . . . . . . 53
2.5 Nature of the sensed photoinduced force . . . . . . . . . . . . . . 58

3 Nano-spectroscopy of 4H-SiC samples: Impacts of doping, strains, and crystallinity . . . 62
3.1 PiF near-field spectroscopy and nano-imaging of 4H-SiC samples . . . 63
3.1.1 Impact of surface crystallinity . . . . . . . . . . . . . . . . 64
3.1.2 Impact of doping . . . . . . . . . . . . . . . . . . . . . . . 69
3.1.3 Impact of strains . . . . . . . . . . . . . . . . . . . . . . . 72
3.2 Sensitivity comparison to Raman spectroscopy . . . . . . . . . . . 75
3.3 Simulating PiF spectra of SiC samples with different surface properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.1 Simulating the effects of crystallinity and doping . . . . . 78
3.3.2 Simulating the effects of strains . . . . . . . . . . . . . . . 83
3.4 PiF signal optimization . . . . . . . . . . . . . . . . . . . . . . . . 85
Conclusion and outlook . . . 89
A. Optical absorption power density of inhomogeneous plane waves . . . 92
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.1.1 Derivation from Poynting identity with complex notation . . . . 94
A.2 Absorption power density of plane waves . . . . . . . . . . . . . . 95
A.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
A.4 Main derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
B. PiF experiments on suspended single layer hBN . . . 104
B.1 Presentation of the suspended single layer hBN sample . . . . . . 104
B.2 Surface modes on single layer hBN . . . . . . . . . . . . . . . . . 106
Résumé étendu . . . 110
Acknowledgements . . . 116
Bibliography . . . 118
參考文獻 Bibliography
[1] Tsunenobu Kimoto. Material science and device physics in SiC technology
for high-voltage power devices. Japanese Journal of Applied Physics , 54(4):
040103, mar 2015. doi: 10.7567/jjap.54.040103. URL https://doi.org/
10.7567%2Fjjap.54.040103 .
[2] Shiqi Ji, Zheyu Zhang, and Fred Wang. Overview of high voltage sic
power semiconductor devices: development and application. CES Trans-
actions on Electrical Machines and Systems , 1(3):254–264, sep 2017. doi:
10.23919/tems.2017.8086104. URL https://doi.org/10.23919%2Ftems.
2017.8086104 .
[3] Stephen Saddow. Silicon carbide technology for advanced human healthcare
applications. Micromachines , 13(3):346, feb 2022. doi: 10.3390/mi13030346.
URL https://doi.org/10.3390%2Fmi13030346 .
[4] Joice Sophia Ponraj, Sathish Chander Dhanabalan, Giovanni Attolini, and
Giancarlo Salviati. SiC nanostructures toward biomedical applications and
its future challenges. Critical Reviews in Solid State and Materials Sci-
ences , 41(5):430–446, may 2016. doi: 10.1080/10408436.2016.1150806. URL
https://doi.org/10.1080%2F10408436.2016.1150806 .
[5] Mian Li, Xiaobing Zhou, Hui Yang, Shiyu Du, and Qing Huang. The critical
issues of SiC materials for future nuclear systems. Scripta Materialia , 143:
149–153, jan 2018. doi: 10.1016/j.scriptamat.2017.03.001. URL https:
//doi.org/10.1016%2Fj.scriptamat.2017.03.001 .
118[6] Yutai Katoh, Lance L. Snead, Izabela Szlufarska, and William J. Weber.
Radiation eff ects in SiC for nuclear structural applications. Current Opinion
in Solid State and Materials Science , 16(3):143–152, jun 2012. doi: 10.1016/
j.cossms.2012.03.005. URL https://doi.org/10.1016%2Fj.cossms.2012.
03.005 .
[7] Renbing Wu, Kun Zhou, Chee Yoon Yue, Jun Wei, and Yi Pan. Recent
progress in synthesis, properties and potential applications of SiC nanoma-
terials. Progress in Materials Science , 72:1–60, jul 2015. doi: 10.1016/
j.pmatsci.2015.01.003. URL https://doi.org/10.1016%2Fj.pmatsci.
2015.01.003 .
[8] Michael Huff . Review paper: Residual stresses in deposited thin-film
material layers for micro- and nano-systems manufacturing. Microma-
chines , 13(12):2084, nov 2022. doi: 10.3390/mi13122084. URL https:
//doi.org/10.3390%2Fmi13122084 .
[9] A Lohrmann, B C Johnson, J C McCallum, and S Castelletto. A review on
single photon sources in silicon carbide. Reports on Progress in Physics , 80
(3):034502, jan 2017. doi: 10.1088/1361-6633/aa5171. URL https://doi.
org/10.1088%2F1361-6633%2Faa5171 .
[10] Stefania Castelletto and Alberto Boretti. Silicon carbide color centers for
quantum applications. Journal of Physics: Photonics , 2(2):022001, mar
2020. doi: 10.1088/2515-7647/ab77a2. URL https://doi.org/10.1088%
2F2515-7647%2Fab77a2 .
[11] S. Nakashima and H. Harima. Raman investigation of SiC poly-
types. physica status solidi (a) , 162(1):39–64, jul 1997. doi:
10.1002/1521-396x(199707)162:1<39::aid-pssa39>3.0.co;2-l. URL
https://doi.org/10.1002%2F1521-396x%28199707%29162%3A1%3C39%
3A%3Aaid-pssa39%3E3.0.co%3B2-l .
[12] Hiroshi Harima. Raman scattering characterization on SiC. Microelectronic
119Engineering , 83(1):126–129, jan 2006. doi: 10.1016/j.mee.2005.10.037. URL
https://doi.org/10.1016%2Fj.mee.2005.10.037 .
[13] R. T. Holm, P. H. Klein, and P. E. R. Nordquist. Infrared refl ectance
evaluation of chemically vapor deposited β -SiC fi lms grown on Si substrates.
Journal of Applied Physics , 60(4):1479–1485, aug 1986. doi: 10.1063/1.
337275. URL https://doi.org/10.1063%2F1.337275 .
[14] Z. C. Feng, A. Rohatgi, C. C. Tin, R. Hu, A. T. S. Wee, and K. P. Se.
Structural, optical, and surface science studies of 4H-SiC epilayers grown by
low pressure chemical vapor deposition. Journal of Electronic Materials , 25
(5):917–923, may 1996. doi: 10.1007/bf02666658. URL https://doi.org/
10.1007%2Fbf02666658 .
[15] Mingkun Zhang, Jun Huang, Rongdun Hong, Xiaping Chen, and Zhengyun
Wu. Annealing eff ects on structural, optical and electrical properties of al
implanted 4H-SiC. In 2009 IEEE International Conference of Electron De-
vices and Solid-State Circuits (EDSSC) . IEEE, dec 2009. doi: 10.1109/edssc.
2009.5394252. URL https://doi.org/10.1109%2Fedssc.2009.5394252 .
[16] Ernst Abbe. Ueber einen neuen beleuchtungsapparat am mikroskop. Archiv
für mikroskopische Anatomie , 9(1):1873, 1873.
[17] EdwardH Synge. Xxxviii. a suggested method for extending microscopic
resolution into the ultra-microscopic region. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science , 6(35):356–362, 1928.
[18] Dieter W Pohl, Winfried Denk, and Mark Lanz. Optical stethoscopy: Image
recording with resolution λ /20. Applied physics letters , 44(7):651–653, 1984.
[19] Bert Hecht, Beate Sick, Urs P Wild, Volker Deckert, Renato Zenobi,
Olivier JF Martin, and Dieter W Pohl. Scanning near-fi eld optical mi-
croscopy with aperture probes: Fundamentals and applications. The Jour-
nal of Chemical Physics , 112(18):7761–7774, 2000.
120[20] John David Jackson. Classical electrodynamics; 2nd ed. Wiley, New York,
NY, 1975.
[21] Keisuke Imaeda, Seiju Hasegawa, and Kohei Imura. Imaging of plasmonic
eigen modes in gold triangular mesoplates by near-fi eld optical microscopy.
The Journal of Physical Chemistry C , 122(13):7399–7409, 2018.
[22] Susil Baral, Ali Rafi ei Miandashti, and Hugh H Richardson. Near-fi eld
thermal imaging of optically excited gold nanostructures: scaling principles
for collective heating with heat dissipation into the surrounding medium.
Nanoscale , 10(3):941–948, 2018.
[23] Lifu Xiao and Zachary D Schultz. Spectroscopic imaging at the nanoscale:
Technologies and recent applications. Analytical chemistry , 90(1):440, 2018.
[24] Fritz Keilmann and Rainer Hillenbrand. Near-fi eld microscopy by elastic
light scattering from a tip. Philosophical Transactions of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences , 362
(1817):787–805, apr 2004. doi: 10.1098/rsta.2003.1347. URL https://doi.
org/10.1098%2Frsta.2003.1347 .
[25] S. Amarie and F. Keilmann. Broadband-infrared assessment of phonon
resonance in scattering-type near-fi eld microscopy. Physical Review B , 83
(4), jan 2011. doi: 10.1103/physrevb.83.045404. URL https://doi.org/
10.1103%2Fphysrevb.83.045404 .
[26] Xinzhong Chen, Debo Hu, Ryan Mescall, Guanjun You, DN Basov, Qing
Dai, and Mengkun Liu. Modern scattering-type scanning near-fi eld optical
microscopy for advanced material research. Advanced Materials , 31(24):
1804774, 2019.
[27] Jeff rey J Schwartz, Devon S Jakob, and Andrea Centrone. A guide to
nanoscale ir spectroscopy: resonance enhanced transduction in contact and
tapping mode afm-ir. Chemical Society Reviews , 51(13):5248–5267, 2022.
121[28] Jeremie Mathurin, Ariane Deniset-Besseau, Dominique Bazin, Emmanuel
Dartois, Martin Wagner, and Alexandre Dazzi. Photothermal afm-ir spec-
troscopy and imaging: Status, challenges, and trends. Journal of Applied
Physics , 131(1), 2022.
[29] Chiao-Tzu Wang, Bei Jiang, Ya-Wei Zhou, Tian-Wen Jiang, Jian-Hua
Liu, Guo-Dong Zhu, and Wen-Bin Cai. Exploiting the surface-enhanced
IR absorption eff ect in the photothermally induced resonance AFM-IR
technique toward nanoscale chemical analysis. Analytical Chemistry , 91
(16):10541–10548, jul 2019. doi: 10.1021/acs.analchem.9b01554. URL
https://doi.org/10.1021%2Facs.analchem.9b01554 .
[30] Luca Quaroni. Understanding and controlling spatial resolution, sensitiv-
ity, and surface selectivity in resonant-mode photothermal-induced reso-
nance spectroscopy. Analytical Chemistry , 92(5):3544–3554, feb 2020. doi:
10.1021/acs.analchem.9b03468. URL https://doi.org/10.1021%2Facs.
analchem.9b03468 .
[31] Abid Anjum Sifat, Junghoon Jahng, and Eric O Potma. Photo-induced
force microscopy (pifm)–principles and implementations. Chemical Society
Reviews , 51(11):4208–4222, 2022.
[32] Josh A Davies-Jones and Philip R Davies. Photo induced force microscopy:
chemical spectroscopy beyond the diff raction limit. Materials Chemistry
Frontiers , 6(12):1552–1573, 2022.
[33] F Zenhausern, MP O’boyle, and HK Wickramasinghe. Apertureless near-
fi eld optical microscope. Applied Physics Letters , 65(13):1623–1625, 1994.
[34] MAXIMILIAN BREUER, MATTHIAS HANDLOSER, TOPTICA PHO-
TONICS AG, TOBIAS GOKUS, et al. Nano-ftir spectroscopy reveals ma-
terial’s true nature, 2018.
[35] Lingfeng M Zhang, Gregory O Andreev, Zhe Fei, Alexander S McLeod,
Gerardo Dominguez, Mark Thiemens, AH Castro-Neto, DN Basov, and
122Michael M Fogler. Near-fi eld spectroscopy of silicon dioxide thin fi lms. Phys-
ical Review B , 85(7):075419, 2012.
[36] Tobias Steinle, Florian Mörz, Andy Steinmann, and Harald Giessen. Ultra-
stable high average power femtosecond laser system tunable from 1.33 to 20
µ m. Optics Letters , 41(21):4863–4866, 2016.
[37] Peter Hermann, Arne Hoehl, Georg Ulrich, Claudia Fleischmann, Antje
Hermelink, Bernd Kästner, Piotr Patoka, Andrea Hornemann, Burkhard
Beckhoff , Eckart Rühl, et al. Characterization of semiconductor materials
using synchrotron radiation-based near-fi eld infrared microscopy and nano-
ftir spectroscopy. Optics express , 22(15):17948–17958, 2014.
[38] DJ Lahneman, TJ Huff man, Peng Xu, SL Wang, T Grogan, and MM Qazil-
bash. Broadband near-fi eld infrared spectroscopy with a high temperature
plasma light source. Optics Express , 25(17):20421–20430, 2017.
[39] Martin Wagner, Devon S Jakob, Steve Horne, Henry Mittel, Sergey Os-
echinskiy, Cassandra Phillips, Gilbert C Walker, Chanmin Su, and Xiaoji G
Xu. Ultrabroadband nanospectroscopy with a laser-driven plasma source.
ACS Photonics , 5(4):1467–1475, 2018.
[40] Ilan Stefanon, Sylvain Blaize, Aurélien Bruyant, Sébastien Aubert, Gilles
Lerondel, Renaud Bachelot, and Pascal Royer. Heterodyne detection of
guided waves using a scattering-type scanning near-fi eld optical microscope.
Optics express , 13(14):5553–5564, 2005.
[41] Lewis Gomez, Renaud Bachelot, Alexandre Bouhelier, Gary P Wiederrecht,
Shih-hui Chang, Stephen K Gray, Feng Hua, Seokwoo Jeon, John A Rogers,
Miguel E Castro, et al. Apertureless scanning near-fi eld optical microscopy:
a comparison between homodyne and heterodyne approaches. JOSA B , 23
(5):823–833, 2006.
[42] Nenad Ocelic, Andreas Huber, and Rainer Hillenbrand. Pseudoheterodyne
detection for background-free near-fi eld spectroscopy. Applied Physics Let-
ters , 89(10), 2006.
123[43] DE Tranca, C Stoichita, R Hristu, SG Stanciu, and GA Stanciu. A study
on the image contrast of pseudo-heterodyned scattering scanning near-fi eld
optical microscopy. Optics Express , 22(2):1687–1696, 2014.
[44] Camilo Moreno, Javier Alda, Edward Kinzel, and Glenn Boreman. Phase
imaging and detection in pseudo-heterodyne scattering scanning near-fi eld
optical microscopy measurements. Applied optics , 56(4):1037–1045, 2017.
[45] A Dazzi, R Prazeres, F Glotin, and JM Ortega. Local infrared microspec-
troscopy with subwavelength spatial resolution with an atomic force micro-
scope tip used as a photothermal sensor. Optics letters , 30(18):2388–2390,
2005.
[46] Feng Lu, Mingzhou Jin, and Mikhail A Belkin. Tip-enhanced infrared
nanospectroscopy via molecular expansion force detection. Nature photon-
ics , 8(4):307–312, 2014.
[47] Dmitry Kurouski, Alexandre Dazzi, Renato Zenobi, and Andrea Centrone.
Infrared and raman chemical imaging and spectroscopy at the nanoscale.
Chemical Society Reviews , 49(11):3315–3347, 2020.
[48] Jérémie Mathurin, Elisabetta Pancani, Ariane Deniset-Besseau, Kevin
Kjoller, Craig B Prater, Ruxandra Gref, and Alexandre Dazzi. How to
unravel the chemical structure and component localization of individual
drug-loaded polymeric nanoparticles by using tapping afm-ir. Analyst , 143
(24):5940–5949, 2018.
[49] Le Wang, Haomin Wang, Martin Wagner, Yong Yan, Devon S Jakob, and
Xiaoji G Xu. Nanoscale simultaneous chemical and mechanical imaging via
peak force infrared microscopy. Science advances , 3(6):e1700255, 2017.
[50] Le Wang, Haomin Wang, and Xiaoji G. Xu. Principle and applications
of peak force infrared microscopy. Chemical Society Reviews , 51(13):5268–
5286, 2022. doi: 10.1039/d2cs00096b. URL https://doi.org/10.1039%
2Fd2cs00096b .
124[51] I Rajapaksa, K Uenal, and H Kumar Wickramasinghe. Image force mi-
croscopy of molecular resonance: A microscope principle. Applied physics
letters , 97(7), 2010.
[52] Junghoon Jahng, Jordan Brocious, Dmitry A. Fishman, Fei Huang, Xiaowei
Li, Venkata Ananth Tamma, H. Kumar Wickramasinghe, and Eric Olaf
Potma. Gradient and scattering forces in photoinduced force microscopy.
Physical Review B , 90(15), oct 2014. doi: 10.1103/physrevb.90.155417. URL
https://doi.org/10.1103%2Fphysrevb.90.155417 .
[53] Junghoon Jahng, Dmitry A. Fishman, Sung Park, Derek B. Nowak, Will A.
Morrison, H. Kumar Wickramasinghe, and Eric O. Potma. Linear and non-
linear optical spectroscopy at the nanoscale with photoinduced force mi-
croscopy. Accounts of Chemical Research , 48(10):2671–2679, oct 2015. doi:
10.1021/acs.accounts.5b00327. URL https://doi.org/10.1021%2Facs.
accounts.5b00327 .
[54] Mohammad Almajhadi and H. Kumar Wickramasinghe. Contrast and imag-
ing performance in photo induced force microscopy. Optics Express , 25(22):
26923, oct 2017. doi: 10.1364/oe.25.026923. URL https://doi.org/10.
1364%2Foe.25.026923 .
[55] Yi Huang, David Legrand, Rémi Vincent, Ekoué Athos Dogbe Foli, Derek
Nowak, Gilles Lerondel, Renaud Bachelot, Thierry Taliercio, Franziska
Barho, Laurent Cerutti, Fernando Gonzalez-Posada, Beng Kang Tay, and
Aurelien Bruyant. Spectroscopic nanoimaging of all-semiconductor plas-
monic gratings using photoinduced force and scattering type nanoscopy.
ACS Photonics , 5(11):4352–4359, oct 2018. doi: 10.1021/acsphotonics.
8b00700. URL https://doi.org/10.1021%2Facsphotonics.8b00700 .
[56] Brian T. O’Callahan, Jun Yan, Fabian Menges, Eric A. Muller, and
Markus B. Raschke. Photoinduced tip–sample forces for chemical nanoimag-
ing and spectroscopy. Nano Letters , 18(9):5499–5505, aug 2018. doi:
12510.1021/acs.nanolett.8b01899. URL https://doi.org/10.1021%2Facs.
nanolett.8b01899 .
[57] Derek Nowak, William Morrison, H. Kumar Wickramasinghe, Junghoon
Jahng, Eric Potma, Lei Wan, Ricardo Ruiz, Thomas R. Albrecht, Kristin
Schmidt, Jane Frommer, Daniel P. Sanders, and Sung Park. Nanoscale
chemical imaging by photoinduced force microscopy. Science Advances , 2
(3), mar 2016. doi: 10.1126/sciadv.1501571. URL https://doi.org/10.
1126%2Fsciadv.1501571 .
[58] Ryan A. Murdick, William Morrison, Derek Nowak, Thomas R. Albrecht,
Junghoon Jahng, and Sung Park. Photoinduced force microscopy: A tech-
nique for hyperspectral nanochemical mapping. Japanese Journal of Ap-
plied Physics , 56(8S1):08LA04, jul 2017. doi: 10.7567/jjap.56.08la04. URL
https://doi.org/10.7567%2Fjjap.56.08la04 .
[59] Bin Ji, Ahmad Kenaan, Shan Gao, Jin Cheng, Daxiang Cui, Hao Yang,
Jinglin Wang, and Jie Song. Label-free detection of biotoxins via a photo-
induced force infrared spectrum at the single-molecular level. Analyst , 144
(20):6108–6117, 2019.
[60] Junghoon Jahng, Eric O Potma, and Eun Seong Lee. Nanoscale spectro-
scopic origins of photoinduced tip–sample force in the midinfrared. Proceed-
ings of the National Academy of Sciences , 116(52):26359–26366, 2019.
[61] Yue Zhao, Ziyu Yao, Christopher D Snow, Yanan Xu, Yao Wang, Dan Xiu,
Laurence A Belfi ore, and Jianguo Tang. Stable fl uorescence of eu3+ complex
nanostructures beneath a protein skin for potential biometric recognition.
Nanomaterials , 11(9):2462, 2021.
[62] Junghoon Jahng, Eric O. Potma, and Eun Seong Lee. Tip-enhanced ther-
mal expansion force for nanoscale chemical imaging and spectroscopy in
photoinduced force microscopy. Analytical Chemistry , 90(18):11054–11061,
aug 2018. doi: 10.1021/acs.analchem.8b02871. URL https://doi.org/10.
1021%2Facs.analchem.8b02871 .
126[63] Bongsu Kim, Junghoon Jahng, Abid Sifat, Eun Seong Lee, and Eric O
Potma. Monitoring fast thermal dynamics at the nanoscale through fre-
quency domain photoinduced force microscopy. The Journal of Physical
Chemistry C , 125(13):7276–7286, 2021.
[64] Andrew C Tam. Applications of photoacoustic sensing techniques. Reviews
of Modern Physics , 58(2):381, 1986.
[65] Mohammad A Almajhadi, Syed Mohammad Ashab Uddin, and H Ku-
mar Wickramasinghe. Observation of nanoscale opto-mechanical molecu-
lar damping as the origin of spectroscopic contrast in photo induced force
microscopy. Nature communications , 11(1):5691, 2020.
[66] Gary E Sommargren. Optical heterodyne profi lometry. Applied Optics , 20
(4):610–618, 1981.
[67] M Teresa Cuberes, HE Assender, G Andrew D Briggs, and OV Kolosov.
Heterodyne force microscopy of pmma/rubber nanocomposites: nanomap-
ping of viscoelastic response at ultrasonic frequencies. Journal of Physics
D: Applied Physics , 33(19):2347, 2000.
[68] Junghoon Jahng, Bongsu Kim, Eun Seong Lee, and Eric Olaf Potma. Quan-
titative analysis of sideband coupling in photoinduced force microscopy.
Physical Review B , 94(19), nov 2016. doi: 10.1103/physrevb.94.195407.
URL https://doi.org/10.1103%2Fphysrevb.94.195407 .
[69] Abeer Al Mohtar. Localized surface plasmon and phonon polaritons inves-
tigated by mid-infrared spectroscopy and near-fi eld nanoscopy . PhD thesis,
Université de Technologie de Troyes; Université Libanaise, 2015.
[70] George W Ford and Willes H Weber. Electromagnetic interactions of
molecules with metal surfaces. Physics Reports , 113(4):195–287, 1984.
[71] Simon Vassant, Jean-Paul Hugonin, Francois Marquier, and Jean-Jacques
Greff et. Berreman mode and epsilon near zero mode. Optics express , 20
(21):23971–23977, 2012.
127[72] A. Cvitkovic, N. Ocelic, and R. Hillenbrand. Analytical model for quanti-
tative prediction of material contrasts in scattering-type near-fi eld optical
microscopy. Optics Express , 15(14):8550, 2007. doi: 10.1364/oe.15.008550.
URL https://doi.org/10.1364%2Foe.15.008550 .
[73] Alexander A Govyadinov, Iban Amenabar, Florian Huth, P Scott Carney,
and Rainer Hillenbrand. Quantitative measurement of local infrared absorp-
tion and dielectric function with tip-enhanced near-fi eld microscopy. The
journal of physical chemistry letters , 4(9):1526–1531, 2013.
[74] Amun Jarzembski and Keunhan Park. Finite dipole model for extreme near-
fi eld thermal radiation between a tip and planar sic substrate. Journal of
Quantitative Spectroscopy and Radiative Transfer , 191:67–74, 2017.
[75] Fei Huang, Venkata Ananth Tamma, Zahra Mardy, Jonathan Burdett, and
H. Kumar Wickramasinghe. Imaging nanoscale electromagnetic near-fi eld
distributions using optical forces. Scientifi c Reports , 5(1), jun 2015. doi:
10.1038/srep10610. URL https://doi.org/10.1038%2Fsrep10610 .
[76] Alexandre Dazzi, Francois Glotin, and Rémi Carminati. Theory of infrared
nanospectroscopy by photothermal induced resonance. Journal of Applied
Physics , 107(12), 2010.
[77] Antonio Ambrosio, Luis A Jauregui, Siyuan Dai, Kundan Chaudhary,
Michele Tamagnone, Michael M Fogler, Dimitri N Basov, Federico Capasso,
Philip Kim, and William L Wilson. Mechanical detection and imaging of
hyperbolic phonon polaritons in hexagonal boron nitride. ACS nano , 11(9):
8741–8746, 2017.
[78] Jeff rey J Schwartz, Son T Le, Sergiy Krylyuk, Curt A Richter, AlbertV
Davydov, and Andrea Centrone. Substrate-mediated hyperbolic phonon
polaritons in moo3. Nanophotonics , 10(5):1517–1527, 2021.
[79] R Hillenbrand and F Keilmann. Optical oscillation modes of plasmon parti-
cles observed in direct space by phase-contrast near-fi eld microscopy. Applied
Physics B , 73:239–243, 2001.
128[80] Pablo Alonso-Gonzalez, Martin Schnell, Paulo Sarriugarte, Heidar Sobhani,
Chihhui Wu, Nihal Arju, Alexander Khanikaev, Federico Golmar, Pablo
Albella, Libe Arzubiaga, et al. Real-space mapping of fano interference in
plasmonic metamolecules. Nano letters , 11(9):3922–3926, 2011.
[81] Pablo Alonso-González, Pablo Albella, Frank Neubrech, Christian Huck,
Jianing Chen, Federico Golmar, Félix Casanova, Luis E Hueso, Annemarie
Pucci, Javier Aizpurua, et al. Experimental verifi cation of the spectral shift
between near-and far-fi eld peak intensities of plasmonic infrared nanoanten-
nas. Physical review letters , 110(20):203902, 2013.
[82] Yuancheng Xu, Eric Tucker, Glenn Boreman, Markus B Raschke, and
Brian A Lail. Optical nanoantenna input impedance. ACS Photonics , 3
(5):881–885, 2016.
[83] R Hillenbrand, T Taubner, and F Keilmann. Phonon-enhanced light–matter
interaction at the nanometre scale. Nature , 418(6894):159–162, 2002.
[84] A. Huber, N. Ocelic, T. Taubner, and R. Hillenbrand. Nanoscale resolved
infrared probing of crystal structure and of plasmon-phonon coupling. Nano
Letters , 6(4):774–778, mar 2006. doi: 10.1021/nl060092b. URL https:
//doi.org/10.1021%2Fnl060092b .
[85] Brian T O’Callahan, William E Lewis, Andrew C Jones, and Markus B
Raschke. Spectral frustration and spatial coherence in thermal near-fi eld
spectroscopy. Physical Review B , 89(24):245446, 2014.
[86] Benedikt Hauer, Claire E. Marvinney, Martin Lewin, Nadeemullah A. Ma-
hadik, Jennifer K. Hite, Nabil Bassim, Alexander J. Giles, Robert E.
Stahlbush, Joshua D. Caldwell, and Thomas Taubner. Exploiting phonon-
resonant near-fi eld interaction for the nanoscale investigation of extended
defects. Advanced Functional Materials , 30(10), jan 2020. doi: 10.1002/
adfm.201907357. URL https://doi.org/10.1002%2Fadfm.201907357 .
[87] Zhe Fei, AS Rodin, Gregory O Andreev, Wenzhong Bao, AS McLeod,
M Wagner, LM Zhang, Zeng Zhao, M Thiemens, Gerardo Dominguez, et al.
129Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Na-
ture , 487(7405):82–85, 2012.
[88] Justin A Gerber, Samuel Berweger, Brian T O’Callahan, and Markus B
Raschke. Phase-resolved surface plasmon interferometry of graphene. Phys-
ical review letters , 113(5):055502, 2014.
[89] Achim Woessner, Mark B Lundeberg, Yuanda Gao, Alessandro Prin-
cipi, Pablo Alonso-González, Matteo Carrega, Kenji Watanabe, Takashi
Taniguchi, Giovanni Vignale, Marco Polini, et al. Highly confi ned low-loss
plasmons in graphene–boron nitride heterostructures. Nature materials , 14
(4):421–425, 2015.
[90] S. Dai, Z. Fei, Q. Ma, A. S. Rodin, M. Wagner, A. S. McLeod, M. K.
Liu, W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Thiemens,
G. Dominguez, A. H. Castro Neto, A. Zettl, F. Keilmann, P. Jarillo-Herrero,
M. M. Fogler, and D. N. Basov. Tunable phonon polaritons in atomically
thin van der waals crystals of boron nitride. Science , 343(6175):1125–1129,
mar 2014. doi: 10.1126/science.1246833. URL https://doi.org/10.1126%
2Fscience.1246833 .
[91] Debo Hu, Xiaoxia Yang, Chi Li, Ruina Liu, Ziheng Yao, Hai Hu, Stephanie
N Gilbert Corder, Jianing Chen, Zhipei Sun, Mengkun Liu, et al. Probing
optical anisotropy of nanometer-thin van der waals microcrystals by near-
fi eld imaging. Nature communications , 8(1):1471, 2017.
[92] Weiliang Ma, Pablo Alonso-González, Shaojuan Li, Alexey Y Nikitin, Jian
Yuan, Javier Martín-Sánchez, Javier Taboada-Gutiérrez, Iban Amenabar,
Peining Li, Saül Vélez, et al. In-plane anisotropic and ultra-low-loss polari-
tons in a natural van der waals crystal. Nature , 562(7728):557–562, 2018.
[93] Bongsu Kim, Junghoon Jahng, Abid Sifat, Eun Seong Lee, and Eric O
Potma. Monitoring fast thermal dynamics at the nanoscale through fre-
quency domain photoinduced force microscopy. The Journal of Physical
Chemistry C , 125(13):7276–7286, 2021.
130[94] Jianxun Liu, Sung Park, Derek Nowak, Mengchuan Tian, Yanqing Wu, Hua
Long, Kai Wang, Bing Wang, and Peixiang Lu. Near-fi eld characterization
of graphene plasmons by photo-induced force microscopy. Laser & Photonics
Reviews , 12(8):1800040, 2018.
[95] Antonio Ambrosio, Michele Tamagnone, Kundan Chaudhary, Luis A Jau-
regui, Philip Kim, William L Wilson, and Federico Capasso. Selective exci-
tation and imaging of ultraslow phonon polaritons in thin hexagonal boron
nitride crystals. Light: Science & Applications , 7(1):27, 2018.
[96] Michele Tamagnone, Antonio Ambrosio, Kundan Chaudhary, Luis A Jau-
regui, Philip Kim, William L Wilson, and Federico Capasso. Ultra-confi ned
mid-infrared resonant phonon polaritons in van der waals nanostructures.
Science advances , 4(6):eaat7189, 2018.
[97] Lars Mester, Alexander A Govyadinov, and Rainer Hillenbrand. High-
fi delity nano-ftir spectroscopy by on-pixel normalization of signal harmonics.
Nanophotonics , 11(2):377–390, 2021.
[98] Jungseok Chae, Sangmin An, Georg Ramer, Vitalie Stavila, Glenn Holland,
Yohan Yoon, A Alec Talin, Mark Allendorf, Vladimir A Aksyuk, and Andrea
Centrone. Nanophotonic atomic force microscope transducers enable chem-
ical composition and thermal conductivity measurements at the nanoscale.
Nano letters , 17(9):5587–5594, 2017.
[99] Mingkang Wang, Georg Ramer, Diego J Perez-Morelo, Georges Pavlidis,
Jeff rey J Schwartz, Liya Yu, Robert Ilic, Vladimir A Aksyuk, and Andrea
Centrone. High throughput nanoimaging of thermal conductivity and inter-
facial thermal conductance. Nano Letters , 22(11):4325–4332, 2022.
[100] Michele Tamagnone, Antonio Ambrosio, Kundan Chaudhary, Luis A Jau-
regui, Philip Kim, William L Wilson, and Federico Capasso. Ultra-confi ned
mid-infrared resonant phonon polaritons in van der waals nanostructures.
Science advances , 4(6):eaat7189, 2018.
131[101] R.F. Davis. Silicon carbide. In Reference Module in Materials Science
and Materials Engineering . Elsevier, 2017. ISBN 978-0-12-803581-8. doi:
https://doi.org/10.1016/B978-0-12-803581-8.02445-0. URL https://www.
sciencedirect.com/science/article/pii/B9780128035818024450 .
[102] Tsunenobu Kimoto and James A Cooper. Fundamentals of silicon carbide
technology: growth, characterization, devices and applications . John Wiley
& Sons, 2014.
[103] Moumita Mukherjee. Silicon Carbide: Materials, Processing and Applica-
tions in Electronic Devices . BoD–Books on Demand, 2011.
[104] JC Burton, L Sun, M Pophristic, SJ Lukacs, FH Long, ZC Feng, and IT Fer-
guson. Spatial characterization of doped sic wafers by raman spectroscopy.
Journal of Applied Physics , 84(11):6268–6273, 1998.
[105] Hiroshi Harima, Shin-ichi Nakashima, and Tomoki Uemura. Raman scat-
tering from anisotropic lo-phonon–plasmon–coupled mode in n-type 4h–and
6h–sic. Journal of applied physics , 78(3):1996–2005, 1995.
[106] M Shamseddine, M Kazan, and M Tabbal. Model for the unpolarized in-
frared refl ectivity from uniaxial polar materials: Eff ects of anisotropy, free
carriers, and defects. Infrared Physics & Technology , 55(1):112–121, 2012.
[107] M Kazan, L Ottaviani, E Moussaed, R Nader, and P Masri. Eff ect of
introducing gettering sites and subsequent au diff usion on the thermal con-
ductivity and the free carrier concentration in n-type 4h-sic. Journal of
Applied Physics , 103(5), 2008.
[108] Judy Chahal, N Rahbany, Y El-Helou, KT Wu, A Bruyant, C Zgheib, and
M Kazan. Temperature dependence of the anisotropy of the infrared dielec-
tric properties and phonon-plasmon coupling in n-doped 4H-SiC. Journal
of Physics and Chemistry of Solids , 187:111861, 2024.
[109] Oliver S Heavens. Optical properties of thin solid fi lms . Courier Corporation,
1991.
132[110] André Burneau, Odile Barres, Jean-Paul Gallas, and Jean-Claude Lavalley.
Comparative study of the surface hydroxyl groups of fumed and precipitated
silicas. 2. characterization by infrared spectroscopy of the interactions with
water. Langmuir , 6(8):1364–1372, 1990.
[111] Plinio Innocenzi, Paolo Falcaro, David Grosso, and Florence Babonneau.
Order- disorder transitions and evolution of silica structure in self-assembled
mesostructured silica fi lms studied through ftir spectroscopy. The Journal
of Physical Chemistry B , 107(20):4711–4717, 2003.
[112] Rui M Almeida and Carlo G Pantano. Structural investigation of silica gel
fi lms by infrared spectroscopy. Journal of Applied Physics , 68(8):4225–4232,
1990.
[113] N Delpuech, D Mazouzi, Nicolas Dupre, P Moreau, Manuella Cerbelaud,
JS Bridel, J-C Badot, E De Vito, Dominique Guyomard, B Lestriez, et al.
Critical role of silicon nanoparticles surface on lithium cell electrochemical
performance analyzed by ftir, raman, eels, xps, nmr, and bds spectroscopies.
The Journal of Physical Chemistry C , 118(31):17318–17331, 2014.
[114] Junghoon Jahng, Eric O Potma, and Eun Seong Lee. Tip-enhanced ther-
mal expansion force for nanoscale chemical imaging and spectroscopy in
photoinduced force microscopy. Analytical chemistry , 90(18):11054–11061,
2018.
[115] Sarath Patabendigedara, Derek Nowak, Mitchell JB Nancarrow, and Si-
mon Martin Clark. Determining the water content of nominally anhydrous
minerals at the nanometre scale. Review of Scientifi c Instruments , 92(2),
2021.
[116] Lukas Novotny and Bert Hecht. Principles of nano-optics . Cambridge uni-
versity press, 2012.
[117] Michele Giocondo, Emanuela Bruno, Emmanuelle Lacaze, Luca De Stefano,
Maria P De Santo, Paola Giardina, Said Houmadi, and Sara Longobardi.
133Atomic force spectroscopies: A toolbox for probing the biological matter.
In Christopher Frewin, editor, Atomic Force Microscopy Investigations Into
Biology: From Cell to Protein , chapter 1, pages 3–28. BoD–Books on De-
mand, 2012.
[118] Elisa Riedo, Francis Lévy, and Harald Brune. Kinetics of capillary conden-
sation in nanoscopic sliding friction. Physical review letters , 88(18):185505,
2002.
[119] Sacha Gómez-Monivas, Juan José Sáenz, Montserrat Calleja, and Ricardo
García. Field-induced formation of nanometer-sized water bridges. Physical
review letters , 91(5):056101, 2003.
[120] Hanwei Wang, Sean M Meyer, Catherine J Murphy, Yun-Sheng Chen, and
Yang Zhao. Visualizing ultrafast photothermal dynamics with decoupled
optical force nanoscopy. Nature communications , 14(1):7267, 2023.
[121] Gaël Gautier, Jérôme Biscarrat, Damien Valente, Thomas Deff orge, A Gary,
and Frédéric Cayrel. Systematic study of anodic etching of highly doped n-
type 4H-SiC in various hf based electrolytes. Journal of The Electrochemical
Society , 160(9):D372, 2013.
[122] Elise Usureau, Enora Vuillermet, Mihai Lazar, Aurore Andrieux, and
Alexandre Jacquemot. High quality single crystal recrystallization of thin
4H-SiC fi lms deposed by pvd techniques, a way for new emerging fi elds.
Solid State Phenomena , 343:21–28, 2023.
[123] Kuan-Ting Wu, Enora Vuillermet, Elise Usureau, Youssef El-Helou, Michel
Kazan, Wei-Yen Woon, Mihai Lazar, and Aurèlien Bruyant. Sic structural
characterization by non destructive near-fi eld microscopy techniques. In
2022 International Semiconductor Conference (CAS) , pages 73–76, 2022.
doi: 10.1109/CAS56377.2022.9934358.
[124] Zhe Fei, Gregory O Andreev, Wenzhong Bao, Lingfeng M Zhang, Alexan-
der S McLeod, Chen Wang, Margaret K Stewart, Zeng Zhao, Gerardo
134Dominguez, Mark Thiemens, et al. Infrared nanoscopy of dirac plasmons at
the graphene–sio2 interface. Nano letters , 11(11):4701–4705, 2011.
[125] Zongwei Xu, Zhongdu He, Ying Song, Xiu Fu, Mathias Rommel, Xichun
Luo, Alexander Hartmaier, Junjie Zhang, and Fengzhou Fang. Topic re-
view: application of raman spectroscopy characterization in micro/nano-
machining. Micromachines , 9(7):361, 2018.
[126] Ben G Streetman, Sanjay Banerjee, et al. Solid state electronic devices ,
volume 4. Prentice hall New Jersey, 2000.
[127] A. J. Huber, A. Ziegler, T. Köck, and R. Hillenbrand. Infrared nanoscopy
of strained semiconductors. Nature Nanotechnology , 4(3):153–157, jan 2009.
doi: 10.1038/nnano.2008.399. URL https://doi.org/10.1038%2Fnnano.
2008.399 .
[128] Alexander M. Gigler, Andreas J. Huber, Michael Bauer, Alexander Ziegler,
Rainer Hillenbrand, and Robert W. Stark. Nanoscale residual stress-fi eld
mapping around nanoindents in SiC by IR s-SNOM and confocal raman
microscopy. Optics Express , 17(25):22351, nov 2009. doi: 10.1364/oe.17.
022351. URL https://doi.org/10.1364%2Foe.17.022351 .
[129] Jun Liu and Yogesh K Vohra. Raman modes of 6 h polytype of silicon
carbide to ultrahigh pressures: A comparison with silicon and diamond.
Physical review letters , 72(26):4105, 1994.
[130] K Karch, F Bechstedt, P Pavone, and D Strauch. Pressure-dependent prop-
erties of sic polytypes. Physical Review B , 53(20):13400, 1996.
[131] Olivier Deparis. Poynting vector in transfer-matrix formalism for the calcu-
lation of light absorption profi le in stratifi ed isotropic optical media. Optics
letters , 36(20):3960–3962, 2011.
[132] Dimitris V Bellas, Dimosthenis Toliopoulos, Nikolaos Kalfagiannis, Anas-
tasios Siozios, Petros Nikolaou, Pantelis C Kelires, Demosthenes C Koutso-
georgis, P Patsalas, and Elefterios Lidorikis. Simulating the opto-thermal
135processes involved in laser induced self-assembly of surface and sub-surface
plasmonic nano-structuring. Thin Solid Films , 630:7–24, 2017.
[133] Steven J Byrnes. Multilayer optical calculations. arXiv preprint
arXiv:1603.02720 , 2016.
[134] David R Jackson. Plane wave propagation and refl ection. In The Electrical
Engineering Handbook , pages 513–524. Elsevier, 2005.
[135] Joshua D Caldwell, Igor Aharonovich, Guillaume Cassabois, James H Edgar,
Bernard Gil, and DN Basov. Photonics with hexagonal boron nitride. Nature
Reviews Materials , 4(8):552–567, 2019.
[136] Joshua D Caldwell, Andrey V Kretinin, Yiguo Chen, Vincenzo Giannini,
Michael M Fogler, Yan Francescato, Chase T Ellis, Joseph G Tischler,
Colin R Woods, Alexander J Giles, et al. Sub-diff ractional volume-confi ned
polaritons in the natural hyperbolic material hexagonal boron nitride. Na-
ture communications , 5(1):5221, 2014.
[137] Christian Huck, Jochen Vogt, Tomáš Neuman, Tadaaki Nagao, Rainer Hil-
lenbrand, Javier Aizpurua, Annemarie Pucci, and Frank Neubrech. Strong
coupling between phonon-polaritons and plasmonic nanorods. Optics ex-
press , 24(22):25528–25539, 2016.
[138] Xi Ling, Wenjing Fang, Yi-Hsien Lee, Paulo T Araujo, Xu Zhang, Joaquin F
Rodriguez-Nieva, Yuxuan Lin, Jin Zhang, Jing Kong, and Mildred S Dres-
selhaus. Raman enhancement eff ect on two-dimensional layered materials:
graphene, h-bn and mos2. Nano letters , 14(6):3033–3040, 2014.
指導教授 溫偉源 none(Wei-Yen Woon Aurélien Bruyant) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明