參考文獻 |
1. 田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體模式決定表徵單元體尺寸(Ⅱ、Ⅲ)」,科技部專題研究計畫期中報告,MOST 107-2221-E-008-020-MY2 (2019)。
2. 吳柏翰,「正交性合成岩體之模擬技術」,國立中央大學土木工程系,碩士論文,中壢(2019)。
3. 張振成,「膠結不良砂岩的淺基礎承載力」,博士論文,國立交通大學土木工程研究所,新竹(2008)。
4. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木工程學系,中壢(2005)。
5. 劉家豪,「橫向等向性合成岩體之力學行為及其變異性」,國立中央大學土木工程系,碩士論文,中壢(2019)。
6. 鄭華恩,「以合成岩體探討裂隙岩體的力學行為」,碩士論文,國立中央大學土木工程學系,中壢(2019)。
7. 鄭華恩、田永銘、盧育辰、劉家豪、吳柏翰,「以合成岩體探討裂隙岩體的力學行為」,第十四屆岩盤工程研討會,國立成功大學,台南(2018)。
8. 盧育辰,「以UDEC模擬互層材料之力學行為」,碩士論文,國立中央大學土木工程研究所,中壢(2009)。
9. 簡宜嫻,「膠結不良軟岩之彈塑性模式與基礎承載模擬應用」,碩士論文,國立交通大學土木工程研究所,新竹(2002)。
10. 蘇正中,「傾斜互層地層之承載力分析」,碩士論文,國立中央大學土木工程研究所,中壢(2002)。
11. Amadei, B., “Importance of Anisotropy When Estimating and Measuring in Situ Stresses in Rock,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 33, No. 3, pp. 293-325 (1996).
12. Amadei, B., “Influence of Rock Anisotropy on Stress Measurements by Overcoring Techniques,” Rock Anisotropy and the Theory of Stress Measurements, Springer, Berlin, Heidelberg, pp. 189-241(1983).
13. Amadei, B., Savage, W.Z., and Swolfs, H.S., “Gravitational stress in anisotropic rock masses,” Int J Rock Mech Min Sci & Geomech Abstr, Vol. 24, pp. 5-14 (1987)
14. Bell, F. G., Engineering in Rock Masses, Butterworth – Heinemann, Oxford (1992).
15. Bieniawski, Z.T., Engineering Rock Mass Classifications, A Wiley-interscience publication, American, pp.7 (1989).
16. Boussinesq, M.J., Applications des potentials, a l’etude de l’equilibre et du movement des solides elastique. Gauthier-Villars, Paris (1885).
17. Bozozuk, M., The Gloucester Test Fill, PhD thesis, Purdue University (1972).
18. Bray, J., Unpublished notes, Imperial College, London (1977).
19. Cho, J.W., Kim, H., Jeon, S., and Min, K.B., “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist,” International Journal of Rock Mechanics & Mining Sciences, Vol. 50, pp.158-169 (2012).
20. Damjanac, B. and Cundall, P.A., “Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs,” Computers and Geotechnics, Vol. 71, pp. 283-294 (2016).
21. Davis, E.H., “A Note on Some Plasticity Solutions Relevant to the Bearing Capacity of Brittle and Fissured Materials,” International Conference on Structural Foundations on Rock, Sydney, pp. 83~90 (1980).
22. Deere, D.U. and Miller, R.P., “Engineering classification and index properties of intact rock,” Air Force Laboratory Technical Report No. AFNL-TR-65-116, Albuquerque, NM. (1966).
23. Einstein, H.H., and Baecher, G.B., “Probabilistic and statistical methods in engineering geology,” Rock Mech Rock Eng, Vol. 16, pp.39-72 (1983).
24. Esmaieli, K., Hadjigeorgiou, J., and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” Int J Rock Mech Min Sci, Vol. 47, pp. 915-926 (2010).
25. Gaziev, E. and Erlikhman, S., “Stresses and strains in anisotropic foundations.” Proc. Symp. on Rock Fracture, ISRM, Nacy, Paper II–1 (1971).
26. Goodman, R. E., Introduction to Rock Mechnics, 2nd edn, John Wiley, Chichester, pp. 562 (1989).
27. Goodman, R.E. Introduction to Rock Mechanics, Wiley, New York, pp. 8–305 (1980).
28. Hoek, E., and Brown E.T., “Practical Estimates of Rock Mass Strength,” Int J Rock Mech Min Sci, Vol. 34, No. 8, pp. 171-180 (1997).
29. Huang, D., Wang, J., and Liu, Su., “A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses,” Granular Matter, Vol. 17(6), pp. 775-791 (2015).
30. International Society for Rock Mechanics (ISRM) Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses (ed. E. T. Brown). Pergamon Press, Oxford, UK, pp. 211 (1981a).
31. Itasca Consulting Group Inc. PFC3D (Particle Flow Code in 3 dimensions), Version 5.0, MN 55401 (2013).
32. Ivars, D.M., Pierce, M.E., and Darcel, C., “Anisotropy and scale dependency in jointed rock-mass strength – A Synthetic Rock Mass Study,” In: Proceedings of the 1st International FLAC/DEM Aymposium on Numerical Modeling, pp. 231-239 (2008).
33. Ivars, D.M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P., and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” Int J Rock Mech Min Sci, Vol. 48(2), pp. 219-244 (2011).
34. Javid, A. H., Fahimifar, A., and Imani, M., “Numerical investigation on the bearing capacity of two interfering strip footings resting on a rock mass,” Computers and Geotechnics, Vol. 69, pp. 514–528 (2015).
35. Kulatilake, P.H.S.W., Malama, B., and Wang, J., “Physical and particle flow modeling of jointed rock block behavior under uniaxial loading,” Int J Rock Mech Min Sci, Vol. 38, pp. 641-657 (2001).
36. Kulhawy, F.H. and Goodman, R.E., Design of foundations on discontinuous rock. Proc. Int. Conf. on Structural Foundations on Rock, Sydney, pp. 20–209 (1980).
37. Ladanyi, B. and Roy, A., Some aspects of the bearing capacity of rock mass. Proc. 7th Canadian Symp. Rock Mechanics, Edmonton (1971).
38. Lei, Q., Latham, J.P., and Tsang, C.F., “The use of discrete fracture networks for modelling coupled geomechanical and hydrological behavior of fractured rocks,” Computers and Geotechnics, Vol. 85, pp. 151-176 (2017).
39. Mar Ivars, D. M., Pierce, M., De Gagne, D. and Darcel, C., “Anisotropy and scale dependency in jointedrock mass strength-a synthetic rock massstudy,” Proceedings of the First International FLAC/DEM Symposium, Minneapolis, USA (2008).
40. Mar Ivars, D. M., Pierce, M.E., Darcel, C., Reyes-Montes, J., Potyondy, D.O., Young, R.P. and Cundall, P.A., “The synthetic rock mass approach for jointed rock mass modelling,” International Journal of Rock Mechanics and Mining Sciences, Vol. 48, pp. 219-244 (2011).
41. Miranda, T. S., Santos, R. F., Barbosa, J. A., Gomes, I. F., Alencar, M. L., Correia, O. J., Falcão, T. C., Gale, J. F. W., and Neumann, V. H., “Quantifying aperture, spacing and fracture intensity in a carbonate reservoir analogue: Crato Formation, NE Brazil,” Marine and Petroleum Geology, 97(May), pp. 556–567 (2018).
42. Morgan, J.R. and Scala, A.J., “Flexible pavement behavior and application of elastic theory—a review,” Proc. 4th Conf. of the Australian Road Research Board, Melbourne 4, Part 2, pp. 1201 (1968).
43. Park, E.S., Martin, C.D., and Christiansson, R., “Simulation of the mechanical behavior of discontinuous rock masses using a bonded-particle model,” Proceedings of the 6th North American rock mechanics symposium, Houston, USA, ARMA 04–480 (2004).
44. Pierce, M., Ivars, D.M., and Sainsbury, B., “Use of Synthetic Rock Masses (SRM) to Investigate Jointed Rock Mass Strength and Deformation Behavior,” In: Anonymous proceedings of the international conference on rock joints and jointed rock masses, Tucson, Arizona, USA. (2009).
45. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” Int J Rock Mech Min Sci, Vol. 41(8), pp. 1329-1364 (2004).
46. Poulsen, B.A., Adhikary, D.P., Elmouttie, M.K. and Wilkins, A., “Convergence of synthetic rock mass modelling and the Hoek-Brown strength criterion,” International Journal of Rock Mechanics and Mining Sciences, Vol. 80, pp. 171-180 (2015).
47. Rollins, K., Clayton, R., Mikesell, R., and Blaise, B., “Drilled Shaft Side Friction in Gravelly Soils,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, no. 1, pp. 987–1003 (2005).
48. Scholtès, L., and Donze, F.V., “Modelling progressive failure in fractured rock masses using a 3D discrete element method,” Int J Rock Mech Min Sci, Vol. 52, pp. 18-30 (2012).
49. Sowers George F., Introductory Soil Mechanics and Foundation, 4th Edition, Macmillan, New York (1979).
50. Sowers, G.F., Foundation bearing in weathered rock. Proc. of Specialty Conf. on Rock Eng. for Foundations and Slopes, ASCE, Geotech. Eng. Div., Boulder CO., Vol. II, pp. 32–41 (1976).
51. Sowers, G.F., Introductory Soil Mechanics and Foundations, Macmillan New York, pp. 6–395 (1970).
52. Sutcliffe, D. J., Yu, H. S., and Sloan, S. W., “Lower bound solutions for bearing capacity of jointed rock,” Computers and Geotechnics, Vol. 31, no. 1, pp. 23–36 (2004).
53. Terzaghi, K., Theoretical Soil Mechanics, John Wiley, New York (1943).
54. Tien, Y.M., and Kuo, M.C., “A failure criterion for transversely isotropic rocks,” Int J Rock Mech Min Sci, Vol. 38(3), pp. 399-412 (2001).
55. Tien, Y.M., Kuo, M. C., and Lu, Y.C., “Chapter 16: Failure criteria for transversely isotropic rock,” Rock Mechanics and Engineering, Volume 1: Principles, Ed. Feng, X.T., CRC Press, London, pp. 451-477 (2016).
56. Vazaios, I., Farahmand, K., Vlachopoulos, N., and Diederichs, M.S., “Effects of confinement on rock mass modulus: A synthetic rock mass (SRM) modelling study,” Journal of Rock Mechanics and Geotechnical Engineering, University of Queen, Kingston, Canada, pp. 436-456 (2018).
57. Wyllie, D. C., Foundations on Rock, Chapman & Hall, London (1992).
58. Wyllie, D.C, and Mah, C. W., Rock Slope Engineering (4th ed.), Taylor & Francis e-Library, pp. 130-242 (2005). |