博碩士論文 107322057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:66 、訪客IP:18.218.71.21
姓名 賴彥丞(Yean-Cheng Lai)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 低放射性廢棄物最終處置場緩衝材料之潛變試驗及變形分析
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性廢棄物最終處置場在國際間採用多重障壁的設計理念,利用層層的處置設施隔絕放射性物質遠離生物圈。緩衝材料在多重障壁中扮演相當重要的角色,須具備低水力傳導度、適當的回脹壓力等。當處置場啟用後,未來可能受到地下水的入侵,緩衝材料可能受到影響改變原本預期的行為特性。
本研究主要分為兩部分,第一部分以MX-80膨潤土與K-V1膨潤土在不同乾密度下進行直接剪力試驗和單向度壓密試驗,模擬處置場初期荷重之影響。第二部分進行回脹壓力、水力傳導度試驗、飽和的應變/應力控制的直剪試驗與單向度壓密試驗,模擬處置場在飽和時之情況,最後使用有限元素軟體ABAQUS進行分析模擬。
研究結果顯示,(1)在回脹壓力上MX-80膨潤土較佳,因為MX-80膨潤土的蒙脫石含量高於K-V1膨潤土的關係;(2)MX-80膨潤土於高乾密度、高正向應力及飽和的直接剪力試驗中,比K-V1膨潤土有較佳的抗剪能力;(3)應力控制直剪顯示,施予剪應力越大,潛變發生的時間會加速;(4)單向度壓密試驗顯示,正向應力越大膨潤土的應變量也越大,潛變時間也會提前。
摘要(英) The low-level radioactive waste final disposal adopts the design concept of multiple barriers internationally, and uses layers of disposal facilities to isolate radioactive materials away from the biosphere. Buffer material play a very important role in multiple barriers system, and must have low hydraulic conductivity and appropriate swelling pressure. When the disposal site is enabled, the future may be subject to groundwater intrusion, buffer material may be affected by changes in the original expected behavior characteristic.
This study is mainly two parts. The first part uses MX-80 bentonite and
K-V1 bentonite at different dry density to conduct direct shear test and one dimensional compression test to simulate the effect of initial load at the disposal site. The second part conducts swelling pressure, hydraulic conductivity test, saturated strain/stress controlled direct shear test and one dimensional compression test to simulate the situation of the disposal site at saturation, and finally uses finite element software ABAQUS for analysis and simulation.
The results of the study show that (1) MX-80 bentonite is better in terms of swelling pressure, because the montmorillonite content of MX-80 bentonite is higher than that of K-V1 bentonite. (2) MX-80 bentonite in the direct shear test has high dry density, high normal stress and saturation, it has better shear resistance than K-V1 bentonite. (3) Stress control direct shear shows that the greater the applied shear stress, the faster the occurrence of creep will be accelerated. (4) The one dimensional compression test shows that the greater the normal stress, the greater the strain of bentonite and the earlier the creep time.
關鍵字(中) ★ 緩衝材料
★ 回脹壓力
★ 直接剪力試驗
★  潛變參數
關鍵字(英)
論文目次 摘要 I
ABSTRACT II
致謝 III
第一章 緒論 1
1.1研究動機 1
1.2研究目的 2
1.3研究範圍 2
第二章 文獻回顧 5
2.1低放射性廢棄物分類 5
2.2低放射性廢棄物處置情形 7
2.2.1國外低放射性廢棄物最終處置現況 7
2.2.2國內低放射性廢棄物最終處置現況 13
2.2.3國內低放射性廢棄物最終處置場設計概念 15
2.2.4低放射性廢棄物最終處置場 16
2.3 膨潤土基本特性 17
2.3.1膨潤土的礦物結晶組成 17
2.3.2膨潤土的水化作用 18
2.3.3膨潤土的分散與凝絮結構 19
2.4 擴散雙層定理 20
2.5 膨潤土的回脹行為 22
2.5.1壓實膨潤土之結構 22
2.5.2膨潤土定體積回脹行為 23
2.6 膨潤土的力學行為 24
2.6.1壓實膨潤土的剪力強度 24
2.6.2潛變基本性質 27
2.6.3膨潤土的潛變行為 28
第三章 研究計劃 37
3.1 研究內容與架構 37
3.2 試驗材料 38
3.2.1 Wyoming granular bentonite (MX-80) 膨潤土 38
3.2.2 Kunigel-V1 bentonite (K-V1) 膨潤土 39
3.3基本物理性質分析方法 40
3.4回脹壓力與水力傳導試驗 40
3.4.1 回脹壓力與水力傳導試驗方法 41
3.4.2定體積回脹壓力與水力傳導度試體製作 42
3.4.3定體積回脹壓力與水力傳導試驗系統配置 43
3.4.4水力傳導試驗 45
3.5應變控制直接剪力試驗 46
3.5.1試體製作 46
3.5.2非飽和試體應變控制直接剪力試驗 48
3.5.3飽和試體直接剪力試驗 49
3.6應力控制直接剪力試驗 50
3.6.1試體製作及飽和 50
3.6.2應力控制直接剪力試驗 51
3.7單向度壓密試驗 53
3.7.1單向度壓密試驗試體製作 53
3.7.2單向度壓密試驗 54
第四章 試驗結果與分析 55
4.1材料基本物理性質分析 55
4.1.1 MX-80基本性質 55
4.1.2 K-V1基本性質 57
4.2定體積回脹壓力試驗結果 59
4.3水力傳導度試驗結果 62
4.4應變控制直接剪力試驗結果 63
4.4.1非飽和試體-不同正向應力之影響 63
4.4.2非飽和試體-不同乾密度之影響 66
4.4.3非飽和試體-不同膨潤土之差異 69
4.4.4飽和試體-不同正向應力之影響 71
4.4.5飽和試體-不同膨潤土之差異 75
4.5應力控制直接剪力試驗結果 77
4.6單向度壓密試驗結果 83
第五章 ABAQUS數值模擬 89
5.1膨潤土潛變參數 89
5.1.1膨潤土的力學性能 89
5.2有限元素模型與網格設定 95
5.2.1初始條件 97
5.2.2邊界條件 97
5.2.3有限元素的計算程序與步驟 98
第六章 有限元素結果與分析 101
6.1應力控制直剪參數分析結果 101
6.2單向度壓密試驗參數分析結果 106
6.3不同試驗參數結果比較 110
第七章 結論與建議 112
7.1 結論 112
7.2 建議 113
參考文獻 114
參考文獻 王明光,(2001),「環境土壤化學」,五南圖書出版。
王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
台灣電力公司,(2009),低放射性廢棄物最終處置設施,概念設計 (B版)。
台灣電力公司,(2010),我國用過核子燃料最終處置初步技術可行性評估報 告。
台灣電力公司,(2014),用過核子燃料最終處置計畫,潛在處置母岩特性調查與評估階段-2010至2013年計畫整合報告。
台灣電力公司,(2015),建議候選場址概念設計報告。
李冠宏,(2015),「最終處置場近場環境對緩衝材料回脹壓力之影響」,碩士論文,國立中央大學土木工程研究所,中壢。
呂曉萱,(2020),「低放射性廢棄物最終處置場夯實回填材料之工程特性研究」,碩士論文,國立中央大學土木工程研究所,中壢。
陳文泉,(2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程研究所,中壢。
陳憶婷,(2016),「低放射性廢棄物最終處置場回填材料長期穩定性之研究」,碩士論文,國立中央大學土木工程研究所,中壢。
張皓鈞,(2015),「低放射性廢棄物最終處置場工程障壁材料於未飽和/飽和環境下之長期穩定性研究」,博士論文,國立中央大學土木工程研究所,中壢。
趙杏媛、張有瑜,(1990),「黏土礦物與黏土礦物分析」,海洋出版社,北京。
楊慶、張惠珍,(2004),「非飽和膨潤土抗剪強度的試驗研究」,岩石力學與工程學報,大連。
賈靈艷、張虎元、張明,(2013),「混合型緩衝回填材料抗剪強度特性研究」,地下空間與工程學報,蘭州。
Abdullah, W.S., Alshibli, K.A., and Al-Zou′bi, M.S. (1999). “Influence of pore water chemistry on swelling behavior of compacted clays.” Applied Clay Science, 15, 447-462.
Åkesson, M., Jacintao, A.C., Gatabin, C., Sanchez, M., and Ledesma, A. (2009). “Benonite THM behaviour at high temperatures: experimental and numerical analysis.” Géotechnique, 59(4), 307-318.
ASTM D422-63. (2007). “Standard test method for particle-size analysis of soils.” PA.
ASTM D584-10. (2010). “Standard test method for wool content of raw wool – laboratory scale.” PA.
ASTM D1141-98. (2013). “Standard practice for the preparation of sub-stitute ocean water.” PA.
ASTM D2216-10. (2010). “Standard test methods for laboratory deter-mination of water (moisture) content of soil and rock by mass.” PA.
ASTM D3080-11. (2014). “Standard test method for direct shear test of soils under consolidated drained conditions.” PA.
ASTM D4318-10. (2010). “Standard test methods for liquid limit, plastic limit, and plasticity index of soils.” PA.
ASTM D4972-13. (2013). “Standard test method for pH of soils.” PA.
ASTM D5890-11. (2011). “Standard test method for swell index of clay mineral component of geosynthetic clay liners.” PA.
Arintha, I. D. (2019). “Experimental and Numerical Analysis on Creep of Buffer Material in Nuclear Waste Deposition Hole.” Unpublished Master thesis, National Central Univ., Taiwan.
Borgesson, L., Hokmark, H., & Karnland, O. (1988). Rheological properties of sodium smectite clay. Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-88-30).
Bucher, F., & Müller-Vonmoos, M. (1989, June). Bentonite as a containment barrier for the disposal of highly radioactive wastes. Applied Clay Science, 4(2), 157-177.
Chen, Y.G., Zhu, C.M., Ye, W.M., Cui, Y.J., and Chen, B. (2016). “Effects of solution concentration and vertical stress on the swelling behavior of compacted GMZ01 bentonite.” Applied Clay Science, 124-125, 11-20.
Claret, F., Bauer, A., Schäfer, T., Griffault, L., and Lanson, B. (2002). “Experimental investigation of the interaction of clays with high pH solutions: a case study from the Callovo-Oxfordian formation, Meuse-Haute Marne underground laboratory (France).” Clays and Clay Minerals, 50, 633-646.
Cuevas, J., Villar, M., Martyn, M., Cobena, J.C., and Leguey, S. (2002). “Thermohydraulic gradients on bentonite: distribution of soluble salts, microstructure and modification of the hydraulic and mechanical behaviour.” Applied Clay Science, 22, 25-38.
Cuevas, J., Fernandez, R., Sanchez, L., Vigil de la Villa, R., Rodriiguez, M., and Leguey, S. (2007). “Reactive diffusion front driven by an alkaline plume in compacted Mg homoionic bentonite.” Clays in Natural & Engineered Barriers for Radioactive Waste Confinement: International Meeting, Lille, France, 509-510.
Cuisinier, O., Masrouri, F., Pelletier, M., Villieras, F., and Mosser-Ruck, R. (2008). “Microstructure of a compacted soil submitted to an alkaline plume.” Applied Clay Science, 40, 159-170.
Delage, P., Marcial, D., Cui, Y.J., and Ruiz, X. (2006). “Ageing effects in the compacted bentonite: a microstructure approach.” Géotechnique, 56(4), 291-304.
D.C.S Simulia. (2016). ABAQUS/CAE. Dassault Systems. Providence, RI, USA.
Freiesleben, H. (2013). Final Disposal of Radioactive Waste. EPJ Web of Conferences, Vol. 54.
Manepally, C., Fedors, R., Basagaoglu, H., Ofoegbu, G., & Pabalan, R. (2011). Coupled Processes Workshop Report. U.S. Nuclear Regulatory Commission. ( NRC–02–07–006 ).
Mitchell, J. (1976). Fundamentals of soil behavior. John Wiley and Sons. New York.
Pintado, X., Mamunul, H. M., & Martikainen, J. (2013). Thermo-Hydro-Mechanical Tests of Buffer Material. . POSIVA Oy. Eurajoki, Finland. (POSIVA 2012-49).
POSIVA Oy. (2008). Safety Case Plan. POSIVA. Eurajoki, Finland. (POSIVA 2008-05).
Pusch, R. (1986). Settlement of canisters with smectite clay envelopes in deposition holes. . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-86-23).
Pusch, R. (1999). Is montmorillonite-rich clay of MX-80 type the ideal buffer for isolation of HLW? . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-99-33).
Pusch, R. (2015). Bentonite Clay. Environmental Properties and Applications. CRC Press. Boca Raton, Florida.
Pusch, R., & Adey, R. (1999). Creep in buffer clay . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR-99-32).
Pusch, R., & Adey, R. A. (1986). Settlement of Clay-enveloped Radioactive canisters. Applied Clay Science, Vol. 1, 353-365.
Pusch, R., Börgesson, L., & Erlström, M. (1987). Alteration of isolating properties of dense smectite clay in repository environment as exemplified by seven pre-quarternary clays . Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR 87-29).
Rutqvist, J., & Tsang, C.-F. (2008). Review of SKB’s Work on Coupled THM Processes Within SR-Can. SKI Report 2008:08.
Savage, D., Lind, A., & Arthur, R. C. (1999). Review of Properties and Uses of Bentonite as a Buffer and Backfill Material. Swedish Nuclear Power Inspectorate. (SKI Report 2008:08).
SKB. (1995). Treatment and final disposal of nuclear waste: Programme for encapsulation, deep geologic disposal, and research, development and demonstration. Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB RD&D Programme 95).
SKB. (2006). Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation. Swedish Nuclear Fuel and Waste Management Co. Stockholm, Sweden. (SKB TR 06-09).
SKB TR11-01. (2011). “Long-term safety for the final repository for spent nuclear fuel at Forsmark: Main report of the SR-Site project Volume I.” SKB Technical Report TR-11-01, Svensk Kärnbränslehantering AB.
Szilvásszy, Z. (1984). Ch 5. Soils engineering for design of ponds, canals and dams in aquaculture, Foodand Agricultural Organization, Research Centre for Water Resources Development, Budapest, Hungary.
Turrero, M.J., Escribano, A., Torres, E., and Martin, P.L. (2007). Con-crete/Febex bentonite interaction: preliminary results on short-term column experiments.” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, International Meeting, Lille, France.
Villar, M.V., Cuevas, J., and Martin, P.L. (1996). “Effects of heat/water flow interaction on compacted bentonite: Preliminary results.” Engineering Geology, 41, 257-267.
Villar, M.V., and Lloret, A. (2004). “Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite.” Applied Clay Science, 26, 337-350.
Villar, M.V., Sánchez, M., and Gens, A. (2008). “Behaviour of a bentonite barrier in the laboratory: experimental results up to 8 years and numerical simulation.” Physics and Chemistry of Earth, 33, 476-485.
Ye, W.M., Zheng, Z.J., Chen, B., Chen, Y.G., Cui, Y.J., and Wang, J. (2014). “Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Applied Clay Science, 101, 192-198.
Yong, R.N., and Benno, P.W. (1975). Soil Properties and Behavior, Elsevier, NewYork.
Yong, R.N., Mohammed, A.M.O., Shooshapasha, I., and Onofrei, C. (1997). “Hydrothermal performance of unsaturated bentonite-sand buffer material.” Engineering Geology, 47, 351-365.
Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J. (2013). “Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite.” Engineering Geology, 166, 74-80.
指導教授 黃偉慶 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明