摘要(英) |
This field study of rainfall-induced debris flows at the Houyenshan of San Yi county, Miaoli, Taiwan was performed by analyzing the recorded images of time-lapse photography cameras, the geophone signals and the rainfall data. The rainfall characteristics of the 24 debris-flow events from 2016 to 2019 show that the previous accumulated rainfall, subsequent rainfall, previous debris-flow events and channel avulsion are all important factors affecting the runout distance of the debris flow. The on-site photography equipment and geophone instruments are combined to categorize the geophone patterns generated by surface runoff, debris flows and debris floods. The peak frequencies of surface runoff events and debris floods are between 50 and 60 Hz, while the main vibration frequencies of rockfall events are about 40 Hz. On the other hand, the peak frequencies of debris flow events are between 20 and 40 Hz. |
參考文獻 |
[1]詹錢登 (2004),「豪雨造成的土石流」,科學發展,第 374 期,頁 14-23。
[2]行政院農業委員會水土保持局 (2005),「水土保持手冊」。
[3]張智瑜 (2005),「地文條件對土石流發生降雨警戒指標之影響」,國立成功大學水利及海洋工程研究所,碩士論文。
[4]曾國源 (2006),「以共用臨域類神經網路架構土石流預警系統之研究」,中華水土保持學報,37(3): 259-270。
[5]李明熹 (2006),「土石流發生降雨警戒分析及其應用」,國立成功 大學水利及海洋工程研究所,博士論文。
[6]尹孝元、黃清哲、連惠邦、李秉乾、周天穎、王晉倫 (2006),「自動化土石流觀測系統之發展及應用」,中華水土保持學報,37(2),91-109。
[7]黃清哲、孫坤池、陳潮億、尹孝元 (2007),「不同型態土石流地聲特性之實驗研究」, 38(4): 417-430。
[8]周憲德、楊祥霖、李璟芳、黃郅軒 (2013),「火炎山土石流之流動型態與地聲特性分析」,中華民國水土保持學報,46(2),71-78。
[9]許家銘 (2013),「三義火炎山土石流現地監測資料之分析與判識」,國立中央大學土木工程研究所,碩士論文。
[10]楊祥霖 (2014),「火炎山土石流之現地監測與影像及地聲分析」,國立中央大學土木工程研究所,碩士論文。
[11]張駿 (2015),「土石流地聲與流動特性之室內實驗與現地監測」,國立中央大學土木工程研究所,碩士論文。
[12]劉耀宇 (2016),「土石流現地監測與地聲試驗分析」,國立中央大 學土木工程研究所,碩士論文。
[13]陳威宏 (2017),「土石流現地監測與流動型態分析」,國立中央大 學土木工程研究所,碩士論文。
[14]蔡勝棠 (2018),「火炎山土石流之降雨特性及地貌演變分析」,國立中央大學土木工程研究所,碩士論文。
[15]彭楙鈞 (2019),「火炎山土石流現地監測及土石流粒徑分析」,國立中央大學土木工程研究所,碩士論文。
[16]Arattano M., and Marchi L. (2008),“System and Sensors for Debris flow Monitoring and Warning”, Sensors , 2436-2452.
[17]Arattano M., Coviello V., Abancó C., Hürlimann M. (2014), “Methods of Data Processing for Debris Flow Seismic Warning”, International Journal of Erosion Control Engineering Vol. 9, No. 3, 114-121.
[18]Berzi D., and Larcan E. (2013), “Flow resistance of inertial debris flows”. Journal of Hydraulic Engineering 139,187–194.
[19]Coussot P.,and Meunier M. (1996),“Recognition, classification and mechanical description of debris flows”.Earth-Science Reviews 40,209-227.
[20]Hungr O., Evans S.G., Bovis, M., and Hutchinson, J.N.(2001)Review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, VII, pp. 221-238.
[21]Oldrich N.,Frederic L.,Herve B.,Eric T.,Joshua T.,Guillaume C., Dominique L. (2013) “High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps”,pages25–37.
[22]Pierson T.C.,(1986),“Flow behavior of channelized debris flows, Mt.
St.Helens,Washington”in:Abraham,A.D.(Ed.),Hillslope Processes.
Allen &Unwin,Boston,pp.269–296.
[23]Xu MD., and Feng QH. (1979),“Roughness of debrisflows.”, Proceeding of the First Conference of Chinese Research of Debris Flows”, pp 51–52 (in Chinese).
[24]Xiaojun G.,Peng C.,Yong L.,Qiang Z.,Yingde K., (2016),“The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake”,pages25–37. |