博碩士論文 107322092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.224.73.157
姓名 簡留玄(Liu-Xuan Jian)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 結合永久散射體雷達差分干涉法與全球衛星定位系統計算地表三維變形
(Decomposing Three-Dimensional Land Motion from A Synergy of PSInSAR and GNSS Stations)
相關論文
★ 結合多種遙測衛星數據觀測湄公河水資源變化★ 利用多時期之衛星影像改進孟加拉地區之地表水量化
★ 利用ALOS SAR影像觀測2008當雄地震同震及震後形變量★ 利用衛星影像觀測2004年印度洋地震震後之海岸地形垂直變化
★ 利用綜合遙測資訊建置之高程模型觀測近岸地形時序變遷★ 整合Sentinel-1與TerraSAR-X 永久散射體雷達差干涉法以監測地表變形
★ 利用區域電離層模式校正Sentinel-1差分干涉以偵測臺灣地表變形★ 利用衛星影像間接建立全台海岸地形模型
★ 應用Sentinel-1衛星TOPS合成孔徑雷達及最小基線長分析技術監測越南河內的地層下陷★ Sentinel-1 Radar Interferometry Decomposes Land Subsidence in Taiwan
★ 以自相似算法進行衛星影像融合和水線判釋★ 基於卷積神經網路於光學衛星影像進行跨衛星之雲偵測
★ 利用衛星遙測資訊於稻米產量預測★ 利用ICESat-2及Sentinel-2反演南海近岸水深
★ 利用行動測深系統產製淺水區深度模型★ 以多元衛星影像監測青藏高原湖泊長期水量變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 雷達差分干涉技術(Differential Synthetic Aperture Radar Interferometry, DInSAR)之高時間、空間解析度特性有助於地表變形監測,依據不同的地表性質、大氣干擾程度、影像品質、解纏錯誤等因素,其精度最佳可達公分等級。永久散射體雷達差分干涉法(Persistent Scatterer InSAR, PSInSAR)則藉由挑選在多組干涉對中長期穩定之像素進行差分干涉,降低同調性低的像素干擾、減少解纏錯誤,以提供高精度變形速率,其精度則可達公厘等級,進行地表微變分析。然而,雷達衛星觀測之變形為視衛星(Line-of-sight, LOS)方向之一維變形,地表水平及垂直方向運動皆產生貢獻。此外,利用Sentinel-1影像分析全台尺度之大範圍地表形變時,容易受到解纏錯誤累積的影響。因此,此研究利用永久散射體雷達差分干涉作為基礎,協以GNSS連續站的克利金內插法,做為控制點消除大氣誤差、軌道誤差、解纏錯誤等其他誤差,並利用GNSS水平向觀測值,消除視衛星方向中水平向位移之貢獻,推估垂直向變形量。因GNSS提供每日觀測量,PSInSAR之時間序列皆可進行三維拆解,提供高時間及空間解析之連續時間垂直變形。初步成果利用獨立GNSS垂直觀測量進行交叉驗證(leave-one-out)得到相關係數為0.91,差值均方根為12.56公厘。另外,我們也利用常見基於雷達衛星觀測幾何獲得垂直向變形之方法:以升降兩軌雷達影像進行聯合反演,比較其精度,與GNSS垂直觀測量之相關係數為0.52,差值均方根為39.24公厘。相較之下,利用GNSS進行三維拆解的成果較佳,展現GNSS做為控制點可有效減少誤差,尤其當研究區的範圍橫跨山區。最後利用連續時序垂直向的空間變化分析台灣西部地表變形的時空變化,可看出彰化無固定下陷季節,雲林與嘉義沿海除溼季外皆有明顯下陷、屏東則是於乾季時明顯下陷。
摘要(英) Several studies had applied the Differential Synthetic Aperture Radar Interferometry (DInSAR) and Persistent Scatterer InSAR (PSInSAR) techniques to reveal land deformation time series for event-based or county-scaled analysis in Taiwan. However, for a national-wide analysis from a merged swath of Sentinel-1 Interferometric Wide (IW) mode, some residual errors need to be mitigated during the unwrapping procedure. Therefore, this study aims to use a network of dense GNSS stations as control points in Taiwan, to tie the PSInSAR deformation with GNSS data through a Kriging scheme, to calculate the absolute Line-of-Sight (LOS) deformation from PS points, and eventually to obtain the decomposed three-dimensional displacements from a single orbit. Leave-one-out strategy with individual GNSS stations are applied for validating the GNSS-based decomposition model. Also the accuracy of vertical deformation from GNSS-based decomposition is compared to the presented effective method of the combination of dual-orbit imageries. The correlation and root-mean-square error of the difference (RMSE) is 0.91 and 12.56 mm, respectively, in the vertical displacement estimates, which outperforms solutions from dual-orbit combination whose correlation and RMSE is 0.52 and 39.24 mm, respectively. The result demonstrates the error from lengthened unwrapping path is well constrained by GNSS network. From this dataset, we can clearly identify the seasonality and spatial pattern of land subsidence caused by different types of land use. Especially in the western alluvial plain of Taiwan, Changhua, Yunlin, Chiayi and Pingtung county are further analyzed with precipitation and subsidence rate to compare the investigation from MOEA.
關鍵字(中) ★ 永久散射體雷達差分干涉
★ GNSS連續站
★ 三維拆解
★ 地表垂直運動
★ 地層下陷
關鍵字(英) ★ PSInSAR
★ GNSS
★ Decomposition
★ Surface vertical deformation
★ land subsidence
論文目次 Chapter 1 Introduction 1
Chapter 2 Data and Materials 6
2.1 Sentinel-1 Imagery 6
2.2 GNSS Continuous Station Network 9
Chapter 3 Methodology 13
3.1 Data Processing Diagram 13
3.2 Persistent Scatterers InSAR 15
3.2.1 Data Preprocessing 16
3.2.2 DInSAR Technique 17
3.2.3 PSInSAR Technique 19
3.3 GNSS Data Preprocessing 22
3.4 Integrating PSInSAR and GNSS Displacement 24
3.4.1 Translate to Line-of-Sight Deformation 24
3.4.2 Kriging Process 29
3.4.3 Calibrated PSInSAR 35
3.5 GNSS-Based Deformation Decomposition 36
Chapter 4 Results 38
4.1 Leave-One-Out Validation 38
4.1.1 The Case of Integrating PSInSAR and GNSS Displacement 39
4.1.2 The Case of GNSS-Based Decomposition 40
4.1.3 Accuracy Analysis 43
4.2 Assessment with the Combination of Ascending and Descending Imageries 45
4.2.1 Methodology and Result 45
4.2.2 Accuracy Analysis 50
4.3 Limitation 52
4.3.1 Discontinuous Deformation Pattern 52
4.3.2 Availability of GNSS Data 55
Chapter 5 Discussion 56
5.1 Densified Information 56
5.2 Case Analysis 57
5.2.1 Land Subsidence in Taiwan 57
5.2.2 Spatiotemporal Patterns of Deformation 60
5.2.3 Deformation Associated with Precipitation 65
5.2.4 Deformation Rate 67
Chapter 6 Conclusion 71
Chapter 7 Reference 74
Appendix A 81
Appendix B 85
Appendix C 91
參考文獻 Abidin, H. Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., ... & Subarya, C. (2001). Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards, 23(2-3), 365-387.
Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., & Laczniak, R. J. (1999). Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology, 27 (6), 483–486. doi: https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2
Alsamamra, H., Ruiz-Arias, J. A., Pozo-Vázquez, D., & Tovar-Pescador, J. (2009). A comparative study of ordinary and residual Kriging techniques for mapping global solar radiation over southern Spain. Agricultural and Forest meteorology, 149(8), 1343-1357.
Altamimi, Z., Sillard, P., & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214. doi:10.1029/2001JB000561.
Beradino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new Algorithm for Surface Deformation Monitoring based on Small Baseline Differential SAR Interferograms. IEEE Transact. Geoscience and Remote Sensing, 40(11), 2375–2383. doi:10.1109/TGRS.2002.803792.
Bürgmann, R., Hilley, G., Ferretti, A., & Novali, F. (2006). Resolving vertical tectonics in the San Francisco Bay Area from permanent scatterer InSAR and GPS analysis. Geology, 34 (3), 221–224. doi: https://doi.org/10.1130/G22064.1.
Chang, C.-P., Chang, T.-Y., Wang, C.-T., Kuo, C.-H., & Chen, K.-S. (2004). Land-surface deformation corresponding to seasonal ground-water fluctuation, determining by SAR interferometry in the SW Taiwan. Mathematics and Computers in Simulation, 67, 351–359. doi:10.1016/j.matcom.2004.06.003.
Chen, C.-T., Hu, J.-C., Lu, C.-Y., Lee, J.-C., & Chan, Y.-C. (2007). Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Engineering Geology, 95, 1–2, 30-47.
CGS (2018). 20180206花蓮地震地質調查報告.
Crosetto, M., Monserrat, O., Iglésias, R., & Crippa, B. (2010). Persistent Scatterer Interferometry: Potential, Limits and Initial C- and X-band Comparison. Photogram. Eng. Remote Sens. 76 (9), 1061–1069.
Delgado Blasco, J. M., Foumelis, M., Stewart, C., & Hooper, A. (2019). Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sensing, 11, 129. doi:10.3390/rs11020129.
Farolfi, G., Bianchini, S., & Casagli, N. (2019). Integration of GNSS and satellite InSAR data: derivation of fine-scale vertical surface motion maps of Po Plain, northern Apennines, and southern Alps, Italy. IEEE Transactions on Geoscience and Remote Sensing, 57(1), 319-328. doi: 10.1109/TGRS.2018.2854371.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi: 10.1109/36.898661.
Ferretti, A., Savio, G., Barzaghi, R., Borghi, A., Musazzi, S., Novali, F., Prati, C., & Rocca, F. (2007). Submillimeter Accuracy of InSAR Time Series: Experimental Validation. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1142-1153. doi:10.1109/TGRS.2007.894440.
Foumelis, M. (2016). Vector-based approach for combining ascending and descending persistent scatterers interferometric point measurements. Geocarto International, doi: 10.1080/10106049.2016.1222636
Galloway, D. L., & Burbey, T. J. (2011). Regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459-1486.
Haghshenas Haghighi, M., & Motagh, M. (2017). Sentinel-1 InSAR over Germany: Large-scale interferometry, atmospheric effects, and ground deformation mapping. ZfV: Zeitschrift für Geodäsie, Geoinformation und Landmanagement, 4, 245-256.
Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers.
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, 23.
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos, J. Geophys. Res., 112, B07407. doi:10.1029/2006JB004763.
Hooper, A., & Zebker, H. (2007). Phase unwrapping in three dimensions with application to InSAR time series. Journal of the Optical Society of America, A 24, 2737–2747.
Hooper, A., Bekaert, D., Spaans, K., & Arikan, M.t. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514.
Huang, M.‐H., Hu, J.‐C., Hsieh, C.‐S., Ching, K.‐E., Rau, R.‐J., Pathier, E., Fruneau, B., & Deffontaines, B. (2006). A growing structure near the deformation front in SW Taiwan as deduced from SAR interferometry and geodetic observation, Geophys. Res. Lett., 33, L12305. doi:10.1029/2005GL025613.
Huang, M.-H., Bürgmann, R., & Hu, J.-C. (2016). Fifteen years of surface deformation in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252–264. doi:10.1016/j.tecto.2016.02.021.
Hung, W.-C., Hwan, C., Che, Y.-A., Chang, C.-P., Yen, J.-Y., Hooper, A., & Yang, C.-Y. (2011). Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sensing of Environment, 115, 957–967. doi:10.1016/j.rse.2010.11.007.
Kohlhase, A.O., Feigl. K., & Massonnet, D. (2003). Applying differential InSAR to orbital dynamics: A new approach for estimating ERS trajectories. Journal of Geodesy, 77, 493-502. doi:10.1007/s00190-003-0336-3.
Lacombe, O., Mouthereau, F., Angelier, J., Deffontaines, B. (2001). Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics 333, 323–345.
Liao, W.-T., Tseng, K.-H., Lee, I-T., Liibusk, A., Lee, J.-C., Liu, J.-Y., Chang, C.P. & Lin, Y.-C. (2019). Sentinel-1 Interferometry with Ionospheric Correction from Global and Local TEC Maps for Land Displacement Detection in Taiwan. Advances in Space Research, 65. doi:10.1016/j.asr.2019.11.041.
Lin, K.-C., Hu, J.-C., Ching, K.-E., Angelier, J., Rau, R.-J., Yu, S.-B., Tsai, C.-H., Shin, T.-C., & Huang, M.-H., 2010. GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi–Chi earthquake in Taiwan. J. Geophys. Res., 115, B07404.
Lu, C.-H., Ni, C.-F., Chang, C.-P., Chen, Y.-A., & Yen, J.-Y. (2016). Geostatistical data fusion of multiple type observations to improve land subsidence monitoring resolution in the choushui river fluvial plain, Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 27(4), 505–520. https://doi.org/10.3319/TAO.2016.01.29.02(ISRS)
Massonnet, D. & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth′s surface. Rev. Geophys., 36, 441-500.
Paramasivam, C.R., & Venkatramanan, S. (2019). Chapter 3 An Introduction to Various Spatial Analysis Techniques. GIS and Geostatistical Techniques for Groundwater Science, 23-30. doi:10.1016/B978-0-12-815413-7.00003-1.
Poland, J. F., & Davis, G. H. (1969). Land subsidence due to withdrawal of fluids, Rev. Eng. Geol., 2, 187– 269.
Samieie-Esfahany, S., Hanssen, R. F., van Thienen-Visser, K., & Muntendam-Bos, A. (2010). On the effect of horizontal deformation on InSAR subsidence estimates. ESA Special Publication, 39 (677).
Schmidt, D.A., & Bürgmann, R. (2003). Time dependent land uplift and subsidence in the Santa Clara valley, California, from a large InSAR data set. J. Geophys. Res., 108. http://dx.doi.org/10.1029/2002JB002267.
Suppe, J. (1984). Kinematics of arc–continent collision, flipping of subduction and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6, 21–33.
Tamburini, A., Bianchi, M., Giannico, C., & Novali, F. (2010). Retrieving surface deformation by PSInSARTM technology: A powerful tool in reservoir monitoring. International Journal of Greenhouse Gas Control, 4, 928–937. doi: 10.1016/j.ijggc.2009.12.009.
Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers InSAR. Tectonophysics, 578, 126–135. doi:10.1016/j.tecto.2012.08.009.
Yen, J.-Y., Lu, C.-H, Dorsey, R. J., Hao, K.‐C., Chang, C.-P., Wang, C.-C., Chuang, R. Y., Kuo, Y.-T., Chiu, C.-Y., Chang, Y.-H., Bovenga, F., Chang, W.-Y., (2019). Insights into Seismogenic Deformation during the 2018 Hualien, Taiwan, Earthquake Sequence from InSAR, GPS, and Modeling. Seismological Research Letters ; 90 (1): 78–87.
Yu, S.-B., Chen, H.-Y., Kuo, L.-C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274, 41–59.
戴于恆、蔡富安,「應用雷達差分干涉技術監測基礎設施之長期變形」,2018測量空間研討會海報發表,2018。
戴于恒,「應用合成孔徑雷達差分干涉技術監測山崩之潛移現象—以九份及烏來地區為例」,國立中央大學地球科學系碩士論文,2016。
指導教授 曾國欣(Kuo-Hsin Tseng) 審核日期 2020-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明