參考文獻 |
[1] Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L. Q. Chen, T. Jackson, Q. Wang, Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites, Nature. 523, (2015), 576-579.
[2] D. Suh, C. M. Moon, D. Kim, S. Baik, Baik, Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits, Adv. Mater. 28, (2016), 7220.
[3] F. Monteverdew, L. Scatteia, Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application, J. Am. Chem. Soc .90, (2007), 1130.
[4] B. Tang, G.X. Hu, H.Y. Gao, L.Y. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials, Int. J. Heat Mass Transfer. 85 (2015), 420-429.
[5] X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, et al, A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods, Adv. Compos. Hybrid Mater. (2018),1-24.
[6] Z. Kuang, Y. Chen, Y. Lu, L. Liu, S. Hu, S. Wen, Y. Mao, L. Zhang, Fabrication of Highly Oriented Hexagonal Boron Nitride Nanosheet/Elastomer Nanocomposites with High Thermal Conductivity, Small. 11, (2015), 1655.
[7] I. Kholmanov, J. Kim, E. Ou, R. S. Ruoff, L. Shi, Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials, ACS Nano. 9, (2015), 11699.
[8] X.F. Zhang, H.Y. Sun, C. Yang, K. Zhang, M.M.F. Yuen, S.H. Yang, Highly conductive polymer composites from room-temperature ionic liquid cured epoxy resin: effect of interphase layer on percolation conductance, RSC Adv. 3, (2013), 1916-1921.
[9] J. Jiao, X. Sun, T.J. Pinnavaia, Reinforcement of a rubbery epoxy polymer by mesostructured silica and organosilica with wormhole framework structures, Adv. Funct. Mater. 18, (2008), 1067-1074.
[10] J.W. Gu, J.J. Du, J. Dang, W.C. Geng, S.H. Hu, Q.Y. Zhang, Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites, RSC Adv. 4, (2014) ,22101–22105
[11] J.W. Gu, Q.Y. Zhang, J. Dang, C.J. Yin, S.J. Chen, Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites, J. Appl. Polym. Sci. 124, (2012), 132–137.
[12] V. Datsyuk, S. Trotsenko, S. Reich, Carbon-nanotube-polymer nanofibers with high thermal conductivity. Carbon. 52, (2013), 605-608.
[13] Y.C. Zhang, K. Dai, J.H. Tang, X. Ji, Z.M. Li, Anisotropically conductive polymer composites with a selective distribution of carbon black in an in situ microfibrillar reinforced blend. Mater. Lett. 64, (2010) ,1430-1432.
[14] W. Dai, J.H. Yu, Y. Wang, Y.Z. Song, F.E. Alam, K. Nishimura, C.-T. Lin, N. Jiang, Enhanced thermal conductivity for polyimide composites with a three dimensional silicon carbide nanowire @ graphene sheets filler. J. Mater. Chem A. 3, (2015), 4884-4891.
[15] S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Userey, M. L. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2 ,(2003), 731.
[16] S. Shenogin, L. P. Xue, R. Ozisik, P. Keblinski, D. G. Cahill, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites J, Appl. Phys. Lett. 95, (2004), 8136-44.
[17] S. Y. Pak, H.M. Kim, S.Y. Kim, J. R. Youn, Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers, Carbon. 50 ,(2012) ,4830–8.
[18] L.Fang,C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength, RSC Adv. 4, (2014), 21010–7.
[19] M.Tsai , I. Tseng, J. Chiang, J. Li, Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability, Acs Appl Mater Inter. 6 ,(2014) ,8639–45.
[20] X. Cui, P. Ding , N. Zhuang , L.Shi , N. Song, S. Tang , Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect, Acs Appl Mater Inter. 7, ( 2015) ,19068–75.
[21] J.W. Gu, Q.Y. Zhang, Y.S. Tang, J.P. Zhang, J. Kong, J. Dang, H.P. Zhang, X.Q. Wang, Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified b-SiC whisker filled celluloid nanocomposites, Surf. Coat. Technol .202, (2008), 2891-2896.
[22] X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Golberg, C.Y. Zhi, Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer, Nanotechnology. 26, (2015), 15705.
[23] C.W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, (2004), 3549-51.
[24] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis, R. C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites, Adv. Mater. 20, (2008), 4740-44.
[25] L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, Y. P. Sun, Carbon Nanosheets for Polymeric Nanocompositeswith High Thermal Conductivity, Adv. Mater. 21, (2009), 2088-2092.
[26] J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P. M. Ajayan, Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components, Nano Lett.15, (2015), 5449-5454.
[27] A. A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater. 10, (2011), 569−581.
[28] L. Tian, P. Anilkumar, L. Cao, C. Y. Kong, M. J. Meziani, H. Qian, L. M. Veca, T. J. Thorne, K. N. Tackett, T. Edwards, Graphene Oxides Dispersing and Hosting Graphene Sheets for Unique Nanocomposite Materials, ACS Nano. 5, (2011), 3052−3058.
[29] H. Hu, Z. Zhao, W. Wan, Y. Gogotsi and J. Qiu, Adv. Mater. 25, (2013), 2219–2223.
[30] S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez and F. del Monte, Chem. Soc. Rev. 42, (2013), 794–830.
[31] Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, X. Sun and J.-K. Kim, ACS Appl. Mater. Interfaces. 7, (2015), 5538– 5549.
[32] Z. Wang, X. Shen, N. M. Han, X. Liu, Y. Wu, W. Ye and J.-K. Kim, Chem. Mater. 28, (2016), 6731–6741.
[33] F. Xiao, S. Naficy, G. Casillas, M. H. Khan, T. Katkus, L. Jiang, H. Liu, H. Li, Z. Huang, Adv. Mater. 27, (2015), 7196.
[34] W. Dai, J. H. Yu, Y. Wang, Y. Z. Song, F. E. Alam, K. Nishimura, C. T. Lin, N. Jiang, J. Mater. Chem A. 3, (2015), 4884.
[35] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, (2016), 1.
[36] H. L. Zhu, Y. Y. Li, Z. Q. Fang, J. J. Xu, F. Y. Cao, J. Y. Wan, C. Preston, B. Yang, L. B. Hu, ACS Nano. 8, (2014), 3606.
[37]Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 21, (2000), 58-64.
[38] Chen, H.Y.; Ginzburg, V.V.; Yang, J.; Yang, Y.F. Liu, W.; Huang, Y.; Du, L.B.: Chen. B. Thermal conductivity of polymer-based composites Fundamentals and applications. Progress in Polymer Science. 59, (2016), 41-85.
[39] De, S.; King. P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 4(12), (2014), 7064-72.
[40] Carmen C. Piras, Susana Fernández-Prieto, Wim M. De Borggraeve, Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives, Nanoscale Adv, 1,(2019), 937-947
[41] Chang. T.C, Fuh. Y.K, Lin, Z.Y, Liao. C.A, Ball milled dispersed network of graphene platelets as thermal interface materials for high-efficiency heat dissipation of electronic devices. JM3. 17(2), (2018), 02400.
[42] Li, A., Zhang, C., & Zhang, Y. F. (2017). Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers, 9(9), 437.
[43] De, S.; King. P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 4(12), (2014), 7064-72.
[44] Y.H. Yu, C.C. M. Ma, C.C. Teng, Y.L. Huang, H.W. Tien, S.H. Lee, I. Wang, Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles, Journal of the Taiwan Institute of Chemical Engineers. 44, (2013), 654–659
[45] Chun-An Liao, Yee-Kwan Kwan, Tien-Chan Chang, Yiin-Kuen Fuh, Ball-Milled Recycled Lead-Graphite Pencils as Highly Stretchable and Low-Cost Thermal-Interface Materials. Polymer. 10, (2018), 799
[46] J. Chen, X. Huang, Y. Zhu, and P. Jiang, Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability, ADV. Funct. Mater. (2017), 1604754
[47] F. Wang, X. Zeng, Y. Yao, R. Sun, J. Xu, C.P. Wong, Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity, Scientific Reports volume. 6, (2016), 19394
[48] M. Kalbac, V. Vales, J. Vejpravov. The effect of a thin gold layer on graphene: a Raman spectroscopy study. RSC Adv. 4, (2014), 60929.
[49] Shen, X.;Wang, Z.;Wu, Y.; Liu, X.; He, Y.B.; Zheng, Q.; Yang, Q.H.; Kang, F.; Kim, J.K. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horizons. 5, (2018), 275–284.
[50] Fang, H.; Zhao, Y.; Zhang, Y.; Ren, Y.; Bai, S.L. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces. 9, (2017), 26447–26459
[51] Fang, H.; Zhang, X.; Zhao, Y.; Bai, S.L. Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength. Compos. Sci. Technol. 152, (2017), 243–253. |