博碩士論文 107323041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.226.251.26
姓名 吳紹偉(Shao-Wei Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具多維奈米結構熱介面材料開發與熱管理應用
(Development of thermal interface materials with multi-dimensional nanostructures and thermal management applications)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-6-30以後開放)
摘要(中) 本研究主要在探討開發新型異質接面奈米結構之熱介面材料(TIMs) ,因高功率電子元件運作時必須轉移到一個散熱器,並最終消散到周圍環境,會產生大量熱能,若電子元件與散熱話接觸面會產生間隙,進而形成一層熱阻抗(Thermal resistance),因此透過開發高熱導率TIMs可將電子元件與散熱器之間間隙填補進而提升熱傳導性能,對於高功率電子元件的散熱能大幅改善並提高電子元件壽命。本研究係藉由多維奈米結構方式,在AFLG中加入奈米銀線(Sliver nanowires,AgNWs) 再利用網印技術印刷至3D結構(纖維)上,混入自備之銅粉。使用將材料嵌入聚二甲基矽氧烷(PDMS),及利用網印技術製造具奈米複合結構作為可具拉伸能力和低成本的熱界面材料,探討其熱界面材料之水平與垂直方向之熱傳導系數,利用熱顯像儀進行溫度量測及觀察其散熱效果,並且實際應用於CPU、LED等發熱元件上進行散熱能力測試。
摘要(英) Due to the increasing demand for high-power density of electronic devices, the technological enhancement of Thermal Interface Materials (TIMs) is crucial for further advancement of thermal management. Graphene displayed a considerable possibility for advancing thermal interface materials because of its extreme-high thermal conductivity. Modest quantities of 2D (two-dimensional) graphene sheets are typically mixed into a polymer matrix to manufacture the nano-composites with enhanced functional or mechanical properties. A simplistic and useful method to bond a few-layer graphite (AFLG) and AgNWs with polydimethylsiloxane (PDMS), print on the high thermal conductivity three-dimensional (3D) structure fiber with different ratios of Cu powder, the corresponding composite with the improvement of thermal conductivity is made. The thermal conductivity of composites with 20 wt% AFLG, AgNWs at 2.0mg/mL displays an increase when the Cu particles loading of 2.5 wt% to 7.5 wt% adding. The effect is attributed to the intercalation of spherical copper particles between other fillers, which comes out the percolation network formation with highly thermal conductivity. Thermal conductivity of through-plane (KX) 5.96 W/mK and in-plane (KZ) 41.7W/mK are achieved in composites with 7.5 wt% copper particle loading. Consequently, the process in this study endows these nano-composites with high thermal conductivity. Besides, the proposed nanostructure-tailored nano-composites are promising for surface variations with time during heating and cooling. The results have brightly shown the interaction between the Cu particles and above fillers in the nano-composites and demonstrate the potential of the hybrid nano-composites in the field of TIMs for practical applications.
關鍵字(中) ★ 多維度(3D/2D/1D)
★ 熱介面材料
★ 聚二甲基矽氧烷(PDMS)
★ 熱管理應用
★ 奈米銀線(AgNWs)
關鍵字(英) ★ multi-dimensional(3D/2D/1D)
★ Thermal interface materials (TIMs)
★ Polydimethylsiloxane(PDMS)
★ thermal management applications
★ Silver nanowires (AgNWs)
論文目次 摘要 I
Abstract II
致 謝 IV
目 錄 V
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 論文架構 5
第二章 文獻回顧 6
2-1 球磨處理 6
2-2 異質接面增強熱傳導路徑 8
2-3 熱介面複合材料功能與應用 9
第三章 研究方法與材料製備 11
3-1製備熱介面材料及介紹 11
3-2實驗設備 13
第四章 主要發現與結果 20
4-1 掃描電子顯微鏡(SEM) 20
4-2 熱介面材料之熱傳導係數 22
4-3 熱顯像儀測試I 24
4-4 熱顯像儀測試II 26
4-5 熱重分析儀測試 28
4-6 處理器(CPU)之散熱測試 30
第五章 結論 32
參考文獻 33
參考文獻 [1] Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L. Q. Chen, T. Jackson, Q. Wang, Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites, Nature. 523, (2015), 576-579.
[2] D. Suh, C. M. Moon, D. Kim, S. Baik, Baik, Ultrahigh thermal conductivity of interface materials by silver-functionalized carbon nanotube phonon conduits, Adv. Mater. 28, (2016), 7220.
[3] F. Monteverdew, L. Scatteia, Resistance to Thermal Shock and to Oxidation of Metal Diborides–SiC Ceramics for Aerospace Application, J. Am. Chem. Soc .90, (2007), 1130.
[4] B. Tang, G.X. Hu, H.Y. Gao, L.Y. Hai, Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials, Int. J. Heat Mass Transfer. 85 (2015), 420-429.
[5] X. Yang, C. Liang, T. Ma, Y. Guo, J. Kong, J. Gu, et al, A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods, Adv. Compos. Hybrid Mater. (2018),1-24.
[6] Z. Kuang, Y. Chen, Y. Lu, L. Liu, S. Hu, S. Wen, Y. Mao, L. Zhang, Fabrication of Highly Oriented Hexagonal Boron Nitride Nanosheet/Elastomer Nanocomposites with High Thermal Conductivity, Small. 11, (2015), 1655.
[7] I. Kholmanov, J. Kim, E. Ou, R. S. Ruoff, L. Shi, Continuous carbon nanotube–ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials, ACS Nano. 9, (2015), 11699.
[8] X.F. Zhang, H.Y. Sun, C. Yang, K. Zhang, M.M.F. Yuen, S.H. Yang, Highly conductive polymer composites from room-temperature ionic liquid cured epoxy resin: effect of interphase layer on percolation conductance, RSC Adv. 3, (2013), 1916-1921.
[9] J. Jiao, X. Sun, T.J. Pinnavaia, Reinforcement of a rubbery epoxy polymer by mesostructured silica and organosilica with wormhole framework structures, Adv. Funct. Mater. 18, (2008), 1067-1074.
[10] J.W. Gu, J.J. Du, J. Dang, W.C. Geng, S.H. Hu, Q.Y. Zhang, Thermal conductivities, mechanical and thermal properties of graphite nanoplatelets/polyphenylene sulfide composites, RSC Adv. 4, (2014) ,22101–22105
[11] J.W. Gu, Q.Y. Zhang, J. Dang, C.J. Yin, S.J. Chen, Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites, J. Appl. Polym. Sci. 124, (2012), 132–137.
[12] V. Datsyuk, S. Trotsenko, S. Reich, Carbon-nanotube-polymer nanofibers with high thermal conductivity. Carbon. 52, (2013), 605-608.
[13] Y.C. Zhang, K. Dai, J.H. Tang, X. Ji, Z.M. Li, Anisotropically conductive polymer composites with a selective distribution of carbon black in an in situ microfibrillar reinforced blend. Mater. Lett. 64, (2010) ,1430-1432.
[14] W. Dai, J.H. Yu, Y. Wang, Y.Z. Song, F.E. Alam, K. Nishimura, C.-T. Lin, N. Jiang, Enhanced thermal conductivity for polyimide composites with a three dimensional silicon carbide nanowire @ graphene sheets filler. J. Mater. Chem A. 3, (2015), 4884-4891.
[15] S. T. Huxtable, D. G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Userey, M. L. Strano, G. Siddons, M. Shim, P. Keblinski, Interfacial heat flow in carbon nanotube suspensions. Nat Mater. 2 ,(2003), 731.
[16] S. Shenogin, L. P. Xue, R. Ozisik, P. Keblinski, D. G. Cahill, Role of thermal boundary resistance on the heat flow in carbon-nanotube composites J, Appl. Phys. Lett. 95, (2004), 8136-44.
[17] S. Y. Pak, H.M. Kim, S.Y. Kim, J. R. Youn, Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers, Carbon. 50 ,(2012) ,4830–8.
[18] L.Fang,C. Wu, R. Qian, L. Xie, K. Yang, P. Jiang, Nano-micro structure of functionalized boron nitride and aluminum oxide for epoxy composites with enhanced thermal conductivity and breakdown strength, RSC Adv. 4, (2014), 21010–7.
[19] M.Tsai , I. Tseng, J. Chiang, J. Li, Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability, Acs Appl Mater Inter. 6 ,(2014) ,8639–45.
[20] X. Cui, P. Ding , N. Zhuang , L.Shi , N. Song, S. Tang , Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect, Acs Appl Mater Inter. 7, ( 2015) ,19068–75.
[21] J.W. Gu, Q.Y. Zhang, Y.S. Tang, J.P. Zhang, J. Kong, J. Dang, H.P. Zhang, X.Q. Wang, Studies on the preparation and effect of the mechanical properties of titanate coupling reagent modified b-SiC whisker filled celluloid nanocomposites, Surf. Coat. Technol .202, (2008), 2891-2896.
[22] X. Huang, S. Wang, M. Zhu, K. Yang, P. Jiang, Y. Bando, D. Golberg, C.Y. Zhi, Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer, Nanotechnology. 26, (2015), 15705.
[23] C.W. Nan, G. Liu, Y. Lin, M. Li, Interface effect on thermal conductivity of carbon nanotube composites. Appl. Phys. Lett. 85, (2004), 3549-51.
[24] A. Yu, P. Ramesh, X. Sun, E. Bekyarova, M. E. Itkis, R. C. Haddon, Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites, Adv. Mater. 20, (2008), 4740-44.
[25] L. M. Veca, M. J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J. W. Connell, Y. P. Sun, Carbon Nanosheets for Polymeric Nanocompositeswith High Thermal Conductivity, Adv. Mater. 21, (2009), 2088-2092.
[26] J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P. M. Ajayan, Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components, Nano Lett.15, (2015), 5449-5454.
[27] A. A. Balandin, Thermal Properties of Graphene and Nanostructured Carbon Materials, Nat. Mater. 10, (2011), 569−581.
[28] L. Tian, P. Anilkumar, L. Cao, C. Y. Kong, M. J. Meziani, H. Qian, L. M. Veca, T. J. Thorne, K. N. Tackett, T. Edwards, Graphene Oxides Dispersing and Hosting Graphene Sheets for Unique Nanocomposite Materials, ACS Nano. 5, (2011), 3052−3058.
[29] H. Hu, Z. Zhao, W. Wan, Y. Gogotsi and J. Qiu, Adv. Mater. 25, (2013), 2219–2223.
[30] S. Nardecchia, D. Carriazo, M. L. Ferrer, M. C. Gutierrez and F. del Monte, Chem. Soc. Rev. 42, (2013), 794–830.
[31] Z. Wang, X. Shen, M. Akbari Garakani, X. Lin, Y. Wu, X. Liu, X. Sun and J.-K. Kim, ACS Appl. Mater. Interfaces. 7, (2015), 5538– 5549.
[32] Z. Wang, X. Shen, N. M. Han, X. Liu, Y. Wu, W. Ye and J.-K. Kim, Chem. Mater. 28, (2016), 6731–6741.
[33] F. Xiao, S. Naficy, G. Casillas, M. H. Khan, T. Katkus, L. Jiang, H. Liu, H. Li, Z. Huang, Adv. Mater. 27, (2015), 7196.
[34] W. Dai, J. H. Yu, Y. Wang, Y. Z. Song, F. E. Alam, K. Nishimura, C. T. Lin, N. Jiang, J. Mater. Chem A. 3, (2015), 4884.
[35] N. Burger, A. Laachachi, M. Ferriol, M. Lutz, V. Toniazzo, D. Ruch, Prog. Polym. Sci. 61, (2016), 1.
[36] H. L. Zhu, Y. Y. Li, Z. Q. Fang, J. J. Xu, F. Y. Cao, J. Y. Wan, C. Preston, B. Yang, L. B. Hu, ACS Nano. 8, (2014), 3606.
[37]Y. Xuan, Q. Li, Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 21, (2000), 58-64.
[38] Chen, H.Y.; Ginzburg, V.V.; Yang, J.; Yang, Y.F. Liu, W.; Huang, Y.; Du, L.B.: Chen. B. Thermal conductivity of polymer-based composites Fundamentals and applications. Progress in Polymer Science. 59, (2016), 41-85.
[39] De, S.; King. P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 4(12), (2014), 7064-72.
[40] Carmen C. Piras, Susana Fernández-Prieto, Wim M. De Borggraeve, Ball milling: a green technology for the preparation and functionalisation of nanocellulose derivatives, Nanoscale Adv, 1,(2019), 937-947
[41] Chang. T.C, Fuh. Y.K, Lin, Z.Y, Liao. C.A, Ball milled dispersed network of graphene platelets as thermal interface materials for high-efficiency heat dissipation of electronic devices. JM3. 17(2), (2018), 02400.
[42] Li, A., Zhang, C., & Zhang, Y. F. (2017). Thermal conductivity of graphene-polymer composites: Mechanisms, properties, and applications. Polymers, 9(9), 437.
[43] De, S.; King. P.J.; Lyons, P.E. Khan, U.; Coleman, J.N. Size Effects and the Problem with Percolation in Nanostructured Transparent Conductors. ACS Nano. 4(12), (2014), 7064-72.
[44] Y.H. Yu, C.C. M. Ma, C.C. Teng, Y.L. Huang, H.W. Tien, S.H. Lee, I. Wang, Enhanced thermal and mechanical properties of epoxy composites filled with silver nanowires and nanoparticles, Journal of the Taiwan Institute of Chemical Engineers. 44, (2013), 654–659
[45] Chun-An Liao, Yee-Kwan Kwan, Tien-Chan Chang, Yiin-Kuen Fuh, Ball-Milled Recycled Lead-Graphite Pencils as Highly Stretchable and Low-Cost Thermal-Interface Materials. Polymer. 10, (2018), 799
[46] J. Chen, X. Huang, Y. Zhu, and P. Jiang, Cellulose Nanofiber Supported 3D Interconnected BN Nanosheets for Epoxy Nanocomposites with Ultrahigh Thermal Management Capability, ADV. Funct. Mater. (2017), 1604754
[47] F. Wang, X. Zeng, Y. Yao, R. Sun, J. Xu, C.P. Wong, Silver Nanoparticle-Deposited Boron Nitride Nanosheets as Fillers for Polymeric Composites with High Thermal Conductivity, Scientific Reports volume. 6, (2016), 19394
[48] M. Kalbac, V. Vales, J. Vejpravov. The effect of a thin gold layer on graphene: a Raman spectroscopy study. RSC Adv. 4, (2014), 60929.
[49] Shen, X.;Wang, Z.;Wu, Y.; Liu, X.; He, Y.B.; Zheng, Q.; Yang, Q.H.; Kang, F.; Kim, J.K. A three-dimensional multilayer graphene web for polymer nanocomposites with exceptional transport properties and fracture resistance. Mater. Horizons. 5, (2018), 275–284.
[50] Fang, H.; Zhao, Y.; Zhang, Y.; Ren, Y.; Bai, S.L. Three-dimensional graphene foam-filled elastomer composites with high thermal and mechanical properties. ACS Appl. Mater. Interfaces. 9, (2017), 26447–26459
[51] Fang, H.; Zhang, X.; Zhao, Y.; Bai, S.L. Dense graphene foam and hexagonal boron nitride filled PDMS composites with high thermal conductivity and breakdown strength. Compos. Sci. Technol. 152, (2017), 243–253.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2021-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明