博碩士論文 107323084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.149.243.29
姓名 林柔廷(Jou-Ting Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 影像自動分群應用於工具機路徑規劃之研究
相關論文
★ 應用於車身號碼打刻機之號碼辨識★ 複合式掌紋識別系統
★ 圓形偵測在OLED Panel 檢測上的應用★ MLCC薄膜厚度即時線上影像檢測技術之研發
★ 全自動微鑽針影像檢測系統之研究★ 應用類神經網路預測COG製程對於中小尺寸TFT-LCD產生之應力狀態
★ 應用機器視覺系統檢測高滲透壓刀輪切割 TFT-LCD 玻璃後斷面之研究★ 低成本輕量化機械手臂之研究
★ 應用在同軸電纜加工之雷射光斑導引機構設計與分析★ 表面電漿波共振-非旋轉方式的新機構設計理論
★ 網路協同式機械設計系統研發★ 軟膠囊自動辨識系統
★ 心電訊號之擷取與分析★ 盲人圖樣感知輔助裝置之研發設計
★ 非旋轉式表面電漿共振儀之改良與實現★ 可攜式無線心電訊號擷取器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-5-30以後開放)
摘要(中) 近年來,機器視覺在工業界應用的地方越來越多,尤其在材料切割與雕刻上,其輸入多為圖像,為了使輸入影像符合使用者需求,常需使用者事先對圖像進行前處理,再輸入至機台進行加工,增加使用上的困難,且一般工具機加工多為 X-Y 方向,若圖像較複雜,其加工路徑可能並未是最佳路徑,造成時間成本,因此本研究希望融合影像處理與路徑規劃,提出新的路徑規劃法。
本研究使用 C#作為開發語言,搭配機器學習與模糊理論,使影像可自動分群並進行切割,以符合使用者需求,並配合輪廓跟蹤產生有別於一般 X-Y 方向的路徑規劃,並探討如分群演算法之利弊、影像處理之效果和路徑規劃之優劣等問題。
關鍵字:影像處理、模糊理論、路徑規劃
摘要(英) In recent years, there are more and more applications of machine vision in the industrial world, especially in material cutting and engraving, the input is mostly images. In order to make the input image meet the needs of users, users often need to pre-image Processing, and then input to the machine for processing, increasing the difficulty of use, and the general tool machining is mostly in the XY direction. If the image is more complicated, the processing path may not be the best path, resulting in time cost, so this study Hope to combine image processing and path planning, and propose a new path planning method.
This research uses C# as the development language, combined with machine learning and fuzzy theory, so that the images can be automatically grouped and cut to meet the needs of users, and the contour tracking generates a path plan that is different from the general XY direction, and discusses such as the pros and cons of Cluster Analysis, the effect of image processing and the advantages and disadvantages of path planning.
Keyword:Image processing、Fuzzy Theory、Route Plan
關鍵字(中) ★ 影像處理
★ 模糊理論
★ 路徑規劃
關鍵字(英)
論文目次 摘要 .................................................................... vi
Abstract ............................................................... vii
致謝 .................................................................. viii
目錄 .................................................................... ix
圖目錄 .................................................................. xi
表目錄 ................................................................ xiii
第一章 緒論 .............................................................. 1
1-1前言 ................................................................ 1
1-2研究動機與目的 ...................................................... 1
1-3文獻回顧 ............................................................ 2
1-4內容架構 ............................................................ 3
第二章 基礎理論 .......................................................... 4
2-1 Canopy聚類演算法 ................................................... 4
2-2 K-means演算法 ...................................................... 6
2-3 顏色模型 ........................................................... 7
2-3-1 RGB顏色模型 .................................................... 7
2-3-2 HSL顏色模型 .................................................... 7
2-4 影像前處理 ......................................................... 8
2-4-1 圖像灰階化 ..................................................... 8
2-4-2 高斯濾波 ....................................................... 8
2-4-3 Otsu二值化 ..................................................... 9
2-5 連通分量標記 ...................................................... 10
2-6 Boundary Tracing .................................................. 11
2-7 模糊理論 .......................................................... 12
2-7-1 模糊推論工廠 .................................................. 12
2-7-2 模糊決策 ...................................................... 12
第三章 影像分群研究方法與討論 ........................................... 14
3-1 顏色分群 .......................................................... 15
3-1-1 Canopy聚類演算法之影響 ........................................ 16
3-1-2 Canopy演算法閾值之影響 ........................................ 18
3-1-3 顏色模型之影響 ................................................ 21
3-2 形狀分群 .......................................................... 23
3-3交叉計算顏色分群與形狀分群 ......................................... 25
第四章 背景移除研究方法與討論 ........................................... 28
4-1背景移除演算法 ..................................................... 28
4-1-1 重要度之影響 .................................................. 31
4-2 手動修正 .......................................................... 33
4-3 背景移除效果討論 .................................................. 35
第五章 影像輪廓之路徑規劃研究方法與討論 ................................. 39
5-1 影像輪廓演算法 .................................................... 39
5-2 操作介面 .......................................................... 42
5-3 路徑規劃之比較 .................................................... 44
5-3-1 圖形模式 ...................................................... 44
5-3-2 輪廓模式 ...................................................... 46
第六章 結論與未來展望 ................................................... 48
5-1結論 ............................................................... 48
5-2未來展望 ........................................................... 48
參考文獻 ................................................................ 49
參考文獻 [1] MacQueen, J. B. “Some Methods for classification and Analysis of
Multivariate Observations”, Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, 1967, pp. 281–297
[2] Sobel I. and Feldman G., “A 3x3 isotropic gradient operator for image
processing ”,a talk at the Stanford Artificial Project in, pp. 271-
272,1968
[3] Canny, J. "A Computational Approach To Edge Detection", IEEE Trans.
Pattern Analysis and Machine Intelligence, pp.679-714,1986
[4] Luc Vincent and Pierre Soille,“Watersheds in digital spaces: an
efficient algorithm based on immersion simulations”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 13, pp. 583–598,1991
[5] Andrew Mccallum , Kamal Nigam , Lyle Ungar, “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference Matching”, The
International Conference on Knowledge Discovery and Data
Mining(SIGKDD),2000
[6] MacQueen, J. B. “Some Methods for classification and Analysis of
Multivariate Observations”, Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability, pp. 281–297, 1967
[7] Weisstein, Eric W,” Moore Neighborhood From Math World-A Wolfram Web
Resource”, http://mathworld.wolfram.com/MooreNeighborhood.hml.
[8] Mirante, Weingarten.” The Radial Sweep Algorithm for Constructing
Triangulated Irregular Networks”, IEEE Computer Graphics and Applications,
Vol. II, May 1982
[9] Jonghoon Seo, Seungho Chae, Jinwook Shim2, Dongchul Kim, Cheolho Cheong and Tack-Don Han,” Fast Contour-Tracing Algorithm Based on a PixelFollowing Method for Image Sensors”, Vol. 9, March 2016
[10] Zadeh L.A.,” Fuzzy sets”, Vol. 8, June 1965
[11] https://www.remove.bg/
[12] Rother C. , Kolmogorov V., and A. Blake, “GrabCut: Interactive
foreground extraction using iterated graph cuts”, ACM Trans. Graph., vol.
23, pp. 309–314, 2004.
[13] 王文俊:《認識 Fuzzy 理論與應用》,第四版,新北市:全華圖書,2017
[14] 張家樵 : <三軸機械手臂雷射加工控制之研究>。碩士論文,國立中央大
學,民國 108 年 6 月
指導教授 黃衍任 審核日期 2020-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明