博碩士論文 107323105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.142.252.100
姓名 李允玓(Yun-Di Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 等向性多孔彈曼德爾問題解法應用於關節軟骨的暫態行為
(Isotropic poroelastic Mandel’s problem solutions for application to transient behavior of articular cartilage)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-28以後開放)
摘要(中) 本研究的目的是分析受固定壓縮力後滑液孔隙壓力和軟骨位移的動態行為,因為軟骨的可滲透和兩相特性,所以我們利用多孔彈性理論來建立模型。本研究我們使用有限元素法將多孔彈性方程式離散後再代入Mandel’s problem的問題定義來模擬軟骨受固定壓縮力後的行為,由於目前為止沒有文獻關於Mandel’s problem動態多孔彈的解析解可以驗證,因此我們從準靜態方面進行FreeFEM++模擬的數值解與推導出的解析解來比較,此外也藉由COMSOL Multiphysics與FreeFEM++驗證軟骨模型的數值解,驗證完準靜態數值解後,再加入慣性項來計算軟骨受固定壓縮力後的動態解,最後再與準靜態解進行比較,進而探討孔隙壓力和軟骨位移暫態的變化,此動態解顯現激振開始時的暫態行為,在未來能應用於振動或應力波的情況。
摘要(英) The purpose of this study is to analyze the dynamic behavior of synovial fluid pore pressure and cartilage displacement under a constant compressive force. Because of the permeability and biphasic characteristics of cartilage, the poroelastic theory was used to build the model. In this study, the poroelastic equations are discretized by finite element method. After that, the discretized equations are substituted into the definition of Mandel′s problem to simulate the cartilage behavior under a constant compressive force. To our best knowledge, the dynamic poroelastic analytical solution of Mandel′s problem has not been derived in any literature. The numerical solution calculated by FreeFEM++ is compared with the analytical solution for the quasi-static state. In addition, the numerical static solution of FreeFEM++ is validated against that of COMSOL Multiphysics. After verification of the numerical quasi-static solution, an inertia term is added to calculate the dynamic solution of the cartilage under a constant compressive force. Finally, the dynamic solution is compared with the quasi-static solution to discuss the transient variations of pore pressure and cartilage displacement. The dynamic solution shows the transient behavior at the beginning of the excitation. In the future, it will be applied to vibration or stress waves.
關鍵字(中) ★ 曼德爾
★ 多孔彈
★ 暫態
關鍵字(英) ★ Mandel
★ poroelastic
★ transient
論文目次 目錄
摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1 多孔彈性相關文獻 2
1-2-2 雙相理論軟骨的文獻 3
1-3 研究目的與方法 4
第2章 Mandel’s problem理論說明 6
2-1 統御方程式 6
2-2 問題定義 10
2-3 解析解 13
第3章 Mandel’s problem數值解 18
3-1 邊界條件 18
3-2 準靜態多孔彈性有限元素法 20
3-3 動態多孔彈性有限元素法 22
3-4 應用範例 24
第4章 結果與討論 27
4-1 例子一的準靜態模擬結果 27
4-2 例子二的準靜態模擬結果 31
4-3 例子二的網格收斂評估 37
4-4 例子二的動態模擬結果 40
第5章 結論與未來展望 42
5-1 結論 42
5-2 未來展望 43
Nomenclature 44
Appendix 45
參考文獻: 48
參考文獻 參考文獻:
[1] V. C. Mow, A. Ratcliffe, and A. R. Poole, "Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures," Biomaterials, vol. 13, pp. 67-97, 1992.
[2] M. B. Goldring, Cartilage and chondrocytes, in (Chapter 3) Kelley′s textbook of rheumatology. Saunders/Elsevier: Philadelphia, PA.: Gary S. Firestein, et al., Editors, 2009.
[3] X. Lu and V. Mow, "Biomechanics of articular cartilage and determination of material properties," Medicine+ Science in Sports+ Exercise, vol. 40, p. 193, 2008.
[4] F. Guilak and V. C. Mow, "The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage," Journal of biomechanics, vol. 33, pp. 1663-1673, 2000.
[5] L. G. Alexopoulos, L. A. Setton, and F. Guilak, "The biomechanical role of the chondrocyte pericellular matrix in articular cartilage," Acta Biomater, vol. 1, pp. 317-25, May 2005.
[6] V. C. Mow, S. Kuei, W. M. Lai, and C. G. Armstrong, "Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments," Journal of biomechanical engineering, vol. 102, pp. 73-84, 1980.
[7] B. R. Simon, Wu, J.S.S., and Evans, J.H., "Poroelastic mechanical models for the intervertebral disc," ed in Proceedngs of Advances in Bioengineering: ASME Winter Annual Meeting, Boston, MA. , 1983, pp. 106-107.
[8] B. R. Simon, "Multiphase poroelastic finite element models for soft tissue structures," 1992.
[9] K. Terzaghi, "Erdbaumechanik auf bodenphysikalischer Grundlage," Deuticke, Wien, 1925.
[10] K. Terzaghi, Theoretical soil mechanics. New York: John Wiley, 1943.
[11] M. A. Biot, "General theory of three‐dimensional consolidation," Journal of applied physics, vol. 12, pp. 155-164, 1941.
[12] L. Cui, A. Cheng, V. Kaliakin, Y. Abousleiman, and J. C. Roegiers, "Finite element analyses of anisotropic poroelasticity: A generalized Mandel′s problem and an inclined borehole problem," International Journal for Numerical and Analytical Methods in Geomechanics, vol. 20, pp. 381-401, 1996.
[13] Y. Abousleiman, A. H. D. Cheng, L. Cui, E. Detournay, and J. C. Roegiers, "Mandel′s problem revisited," Géotechnique, vol. 46, pp. 187-195, 1996/06/01 1996.
[14] N. Hosoda, N. Sakai, Y. Sawae, and T. Murakami, "Depth-Dependence and Time-Dependence in Mechanical Behaviors of Articular Cartilage in Unconfined Compression Test under Constant Total Deformation," Journal of Biomechanical Science and Engineering, vol. 3, pp. 209-220, 2008.
[15] L. Li, M. Buschmann, and A. Shirazi-Adl, "A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in unconfined compression," Journal of biomechanics, vol. 33, pp. 1533-1541, 2000.
[16] W. Lai, V. C. Mow, and V. Roth, "Effects of nonlinear strain-dependent permeability and rate of compression on the stress behavior of articular cartilage," 1981.
[17] M. Holmes, "Finite deformation of soft tissue: analysis of a mixture model in uni-axial compression," 1986.
[18] A. Mak, "The apparent viscoelastic behavior of articular cartilage—the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows," 1986.
[19] A. F. Mak, "Unconfined compression of hydrated viscoelastic tissues: a biphasic poroviscoelastic analysis," Biorheology, vol. 23, pp. 371-383, 1986.
[20] M. R. DiSilvestro, Q. Zhu, M. Wong, J. S. Jurvelin, and J.-K. F. Suh, "Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I—simultaneous prediction of reaction force and lateral displacement," Journal of biomechanical engineering, vol. 123, pp. 191-197, 2001.
[21] C. Armstrong, W. Lai, and V. Mow, "An analysis of the unconfined compression of articular cartilage," Journal of biomechanical engineering, vol. 106, pp. 165-173, 1984.
[22] R. L. Spilker, J.-K. Suh, and V. C. Mow, "A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage," Journal of biomechanical engineering, vol. 114, pp. 191-201, 1992.
[23] M. A. Biot and D. Willis, "The elastic coeffcients of the theory of consolidation," J. appl. Mech, vol. 24, pp. 594-601, 1957.
[24] M. Carroll, "An effective stress law for anisotropic elastic deformation," Journal of Geophysical Research: Solid Earth, vol. 84, pp. 7510-7512, 1979.
[25] E. Detournay and A. H. D. Cheng, "5 - Fundamentals of Poroelasticity," in Analysis and Design Methods, C. Fairhurst, Ed., ed Oxford: Pergamon, 1993, pp. 113-171.
[26] J. R. Rice and M. P. Cleary, "Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents," Reviews of Geophysics, vol. 14, pp. 227-241, 1976.
[27] Y. Abousleiman, Chhajlani, R. & Roegiers, J.-C. , "Effect of stress variation on Biot′s parameter," in First North American Rock Mechanics Symposium, Poster Session Abstracts, pp. 1-4, 1994.
[28] J. Mandel, "Consolidation des sols (étude mathématique)," Geotechnique, vol. 3, pp. 287-299, 1953.
[29] F. H. D. Bernardi, K. Ohtsuka, O. Pironneau. (2019). freefem++ documentation v4.2. Available: https://freefem.org/
[30] K. Torberntsson, Stiernström, V., "Solving the Linear Poroelastic Equations using the SBP-SAT method," Uppsala University, 2016.
[31] B. A. Szabo and G. C. Lee, "Derivation of stiffness matrices for problems in plane elasticity by Galerkin′s method," International Journal for Numerical Methods in Engineering, vol. 1, pp. 301-310, 1969.
[32] H. F. Wang and M. P. Anderson, "Introduction to Groundwater Modeling: Finite Difference and Finite Element Methods," ed: Academic Press, New York, 1982.
[33] H. F. Wang, "Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology," ed: Princeton University Press, 2000, pp. 238-245.
[34] O. Zienkiewicz and T. Shiomi, "Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution," International journal for numerical and analytical methods in geomechanics, vol. 8, pp. 71-96, 1984.
[35] P. J. Phillips, "Finite element methods in linear poroelasticity: theoretical and computational results," University of Texas at Austin, 2005.
[36] C.-Y. Chung, "Evaluation of the Mechanical Behavior and Material Properties of Native and Tissue-engineered Cartilage Using Finite Element Analysis and Ultrasonic Elastography Measurement," Case Western Reserve University School of Graduate Studies, 2015.
[37] M. A. Soltz and G. A. Ateshian, "Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression," Journal of Biomechanics, vol. 31, pp. 927-934, 1998/10/01/ 1998.
[38] J. Jurvelin, M. Buschmann, and E. Hunziker, "Optical and mechanical determination of Poisson′s ratio of adult bovine humeral articular cartilage," Journal of biomechanics, vol. 30, pp. 235-241, 1997.
[39] E. Rybicki, W. Glaeser, J. Strenkowski, and M. Tamm, "Effects of cartilage stiffness and viscosity on a nonporous compliant bearing lubrication model for living joints," Journal of biomechanics, vol. 12, pp. 403-409, 1979.
[40] W. Gu, B. Lewis, W. Lai, A. Ratcliffe, and V. Mow, "A technique for measuring volume and true density of the solid matrix of cartilaginous tissues," in American Society of Mechanical Engineers, Bioengineering Division (Publication) BED, ed, 1996, pp. 89-90.
[41] A. Verruijt, "Theory and problems of poroelasticity," Delft University of Technology, 2013.
[42] J. P. Carter, J. Small, and J. R. Booker, "A theory of finite elastic consolidation," International Journal of Solids and Structures, vol. 13, pp. 467-478, 1977.
[43] J. B. Haga, H. Osnes, and H. P. Langtangen, "On the causes of pressure oscillations in low‐permeable and low‐compressible porous media," International Journal for Numerical and Analytical Methods in Geomechanics, vol. 36, pp. 1507-1522, 2012.
[44] P. J. Phillips and M. F. Wheeler, "Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach," Computational Geosciences, vol. 13, pp. 5-12, 2009.
[45] I. Babuska and B. Szabo, "On the rates of convergence of the finite element method," International Journal for Numerical Methods in Engineering, vol. 18, pp. 323-341, 1982.
[46] ANSYS Inc., "Dynamics -Training Manual," ANSYS Release 7.0, USA: SAS IP, Inc.,2003.
[47] H. Mankin and A. Thrasher, "Water content and binding in normal and osteoarthritic human cartilage," The Journal of bone and joint surgery. American volume, vol. 57, pp. 76-80, 1975.
[48] J. E. Berberat, M. J. Nissi, J. S. Jurvelin, and M. T. Nieminen, "Assessment of interstitial water content of articular cartilage with T1 relaxation," Magnetic resonance imaging, vol. 27, pp. 727-732, 2009.
[49] Z. L. Liu, "Multiphysics in Porous Materials," ed: Springer, 2018, pp. 219-235.
[50] S. Saarakkala, M. Laasanen, J. Jurvelin, K. Törrönen, M. Lammi, R. Lappalainen, et al., "Ultrasound indentation of normal and spontaneously degenerated bovine articular cartilage," Osteoarthritis and Cartilage, vol. 11, pp. 697-705, 2003.
[51] C.-Y. Chung, J. Heebner, H. Baskaran, J. F. Welter, and J. M. Mansour, "Ultrasound elastography for estimation of regional strain of multilayered hydrogels and tissue-engineered cartilage," Annals of biomedical engineering, vol. 43, pp. 2991-3003, 2015.
指導教授 鍾禎元 周鼎贏(Chen-Yuan Chung Dean Chou) 審核日期 2021-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明