參考文獻 |
1. Ovington L.G., Advances in wound dressings. Clinics in Dermatology, 2007. 25(1): p. 33-38.
2. Boateng J.S., Matthews K.H., Stevens H.N., and Eccleston G.M., Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 2008. 97(8): p. 2892-2923.
3. Kenry and Lim C.T., Nanofiber technology: current status and emerging developments. Progress in Polymer Science, 2017. 70: p. 1-17.
4. Pham Q.P., Sharma U., and Mikos A.G., Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering, 2006. 12(5): p. 1197-1211.
5. Tan L., Hu J., Huang H., Han J., and Hu H., Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. International Journal of Biological Macromolecules, 2015. 79: p. 469-476.
6. Abrigo M., McArthur S.L., and Kingshott P., Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromolecular Bioscience, 2014. 14(6): p. 772-792.
7. Yang S., Li X., Liu P., Zhang M., Wang C., and Zhang B., Multifunctional Chitosan/Polycaprolactone Nanofiber Scaffolds with Varied Dual-Drug Release for Wound-Healing Applications. ACS Biomaterials Science & Engineering, 2020. 6(8): p. 4666-4676.
8. Lee Y.J., Shin D.S., Kwon O.W., Park W.H., Choi H.G., Lee Y.R., Han S.S., Noh S.K., and Lyoo W.S., Preparation of atactic poly(vinyl alcohol)/sodium alginate blend nanowebs by electrospinning. Journal of Applied Polymer Science, 2007. 106(2): p. 1337-1342.
9. Sikorski P, Mo F, Skjåk-Bræk G, and Stokke B.T., Evidence for Egg-Box-Compatible Interactions in Calcium-Alginate Gels from Fiber X-ray Diffraction. Biomacromolecules, 2007. 8: p. 2098-2103.
10. Kyzioł A, Michna J, Moreno I, Gamez E, and S I., Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. European Polymer Journal, 2017. 96: p. 350-360.
11. Tarun K and N G., Calcium alginate/PVA blended nano fibre matrix for wound dressing. Indian Journal of Fibre & Textile Research, 2011. 37: p. 127-132.
12. Lee J.Y., Chung J., Chung W.J., and Kim G., Fabrication and in vitro biocompatibilities of fibrous biocomposites consisting of PCL and M13 bacteriophage-conjugated alginate for bone tissue engineering. Journal of Materials Chemistry B, 2016. 4(4): p. 656-665.
13. Bartnikowski M., Dargaville T.R., Ivanovski S., and Hutmacher D.W., Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019. 96: p. 1-20.
14. Zhang S., Campagne C., and Salaün F., Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Applied Sciences, 2019. 9(3): p. 2-36.
15. Bayati V., Abbaspour M.R., Dehbashi F.N., Neisi N., and Hashemitabar M., A dermal equivalent developed from adipose-derived stem cells and electrospun polycaprolactone matrix: an in vitro and in vivo study. Anatomical Science International, 2017. 509-520(4): p. 509-520.
16. Ren K., Wang Y., Sun T., Yue W., and Zhang H., Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science and Engineering: C, 2017. 78: p. 324-332.
17. Gentile P., Chiono V., Tonda-Turo C., Ferreira A.M., and Ciardelli G., Polymeric membranes for guided bone regeneration. Biotechnol J, 2011. 6(10): p. 1187-1197.
18. Powers J.G., Higham C., Broussard K., and Phillips T.J., Wound healing and treating wounds: Chronic wound care and management. J Am Acad Dermatol, 2016. 74(4): p. 607-25; quiz 625-6.
19. Moura L.I., Dias A.M., Carvalho E., and de Sousa H.C., Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomaterialia, 2013. 9(7): p. 7093-7114.
20. 郭緒東, 重組人類生長因子在傷口癒合上的運用. 家庭醫學與基層醫療 第二十五卷第十期: p. 389-395.
21. Li H., Fu X., Zhang L., Huang Q., Wu Z., and Sun T., Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. Journal of Surgical Research, 2008. 145(1): p. 41-48.
22. Xie P. , Ji W. , and Wei Z. , Preparation and Properties of Silver Nanoparticles. Characterization and Application of Nanomaterials, 2018: p. 40-48.
23. Barani H., Boroumand M.N., and Rafiei S., Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics. Fibers and Polymers, 2017. 18(4): p. 658-665.
24. Lakshman L.R., Shalumon K.T., Nair S.V., Jayakumar R., and Nair S.V., Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-fibrous Mat for Wound Dressing. Journal of Macromolecular Science, Part A, 2010. 47(10): p. 1012-1018.
25. Shenashen M.A., El-Safty S.A., and Elshehy E.A., Synthesis, Morphological Control, and Properties of Silver Nanoparticles in Potential Applications. Particle & Particle Systems Characterization, 2014. 31(3): p. 293-316.
26. Franci G., Falanga A., Galdiero S., Palomba L., Rai M., Morelli G., and Galdiero M., Silver nanoparticles as potential antibacterial agents. Molecules, 2015. 20(5): p. 8856-8874.
27. El-Aassar M.R., Ibrahim O.M., Fouda M.M.G., El-Beheri N.G., and Agwa M.M., Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydrate Polymers, 2020. 238: p. 116-175.
28. 劉宜旻, Indolicidin 之二聚體形式對輸送去氧寡核苷酸的影響. 國立中央大學 化學工程與材料工程學系 碩士論文, 2018.
29. Li W., Wu D., Tan J., Liu Z., Lu L., and Zhou C., A gene-activating skin substitute comprising PLLA/POSS nanofibers and plasmid DNA encoding ANG and bFGF promotes in vivo revascularization and epidermalization. Journal of Materials Chemistry B, 2018. 6(43): p. 6977-6992.
30. Yoon D.S., Lee Y., Ryu H.A., Jang Y., Lee K.M., Choi Y., Choi W.J., Lee M., Park K.M., Park K.D., and Lee J.W., Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing. Acta Biomaterialia, 2016. 38: p. 59-68.
31. 林于廷, 開發促進傷口癒合之複合敷料. 國立中央大學 化學工程與材料工程學系 碩士論文, 2019.
32. Peng H. , Han Y. , Liu T. , Tjiu W.C. , and He C. , Morphology and thermal degradation behavior of highly exfoliated CoAl-layered double hydroxide/polycaprolactone nanocomposites prepared by simple solution intercalation. Thermochimica Acta, 2010. 502(1-2): p. 1-7.
33. Elzein T., Nasser-Eddine M., Delaite C., Bistac S., and Dumas P., FTIR study of polycaprolactone chain organization at interfaces. Journal of Colloid and Interface Science, 2004. 273(2): p. 381-387.
34. Sarmento B., Ferreira D., Veiga F., and Ribeiro A., Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, 2006. 66(1): p. 1-7.
35. Bierhalz A.C.K. and Moraes A.M., Composite membranes of alginate and chitosan reinforced with cotton or linen fibers incorporating epidermal growth factor. Materials Science and Engineering: C, 2017. 76: p. 287-294.
36. Lee H., Ahn S., Bonassar L.J., Chun W., and Kim G., Cell-laden poly(varepsilon-caprolactone)/alginate hybrid scaffolds fabricated by an aerosol cross-linking process for obtaining homogeneous cell distribution: fabrication, seeding efficiency, and cell proliferation and distribution. Tissue Engineering: Part C,Methods, 2013. 19(10): p. 784-793.
37. Croisier F., Duwez A.S., Jerome C., Leonard A.F., van der Werf K.O., Dijkstra P.J., and Bennink M.L., Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 2012. 8(1): p. 218-224.
38. Chen S., Liu B., Carlson M.A., Gombart A.F., Reilly D.A., and Xie J., Recent advances in electrospun nanofibers for wound healing. Nanomedicine, 2017.
39. Augst A.D., Kong H.J., and Mooney D.J., Alginate hydrogels as biomaterials. Macromolecular Bioscience, 2006. 6(8): p. 623-633.
40. Breitbart A.S., Laser J., Parrett B., Porti D., Grant R.T., Grande D.A., and Mason J.M., Accelerated diabetic wound healing using cultured dermal fibroblasts retrovirally transduced with the platelet-derived growth factor B gene. Annals of Plastic Surgery, 2003. 51(4): p. 409-414.
41. Wang M., Wei J., Shang F., Zang K., and Ji T., Platelet-derived growth factor B attenuates lethal sepsis through inhibition of inflammatory responses. International Immunopharmacology, 2019. 75: p. 105792.
42. Kaltalioglu K., Coskun-Cevher S., Tugcu-Demiroz F., and Celebi N., PDGF supplementation alters oxidative events in wound healing process: a time course study. Archives of Dermatological Research, 2013. 305(5): p. 415-422.
43. Li H F.X., Zhang L, Research of PDGF-BB Gel on the Wound Healing of Diabetic Rats and Its Pharmacodynamics. Yearbook of Surgery, 2009. 2009: p. 203-204.
44. Man L.X., Park J.C., Terry M.J., Mason J.M., Burrell W.A., Liu F., Kimball B.Y., Moorji S.M., Lee J.A., and Breitbart A.S., Lentiviral gene therapy with platelet-derived growth factor B sustains accelerated healing of diabetic wounds over time. Annals of Plastic Surgery, 2005. 55(1): p. 81-86.
45. Jinnin M., Ihn H., Mimura Y., Asano Y., Yamane K., and Tamaki K., Regulation of fibrogenic/fibrolytic genes by platelet-derived growth factor C, a novel growth factor, in human dermal fibroblasts. Journal of Cellular Physiology, 2005. 202(2): p. 510-517.
46. Plonka A.B., Khorsand B., Yu N., Sugai J.V., Salem A.K., Giannobile W.V., and Elangovan S., Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Therapy, 2017. 24(1): p. 31-39.
47. McDougall S., Dallon J., Sherratt J., and Maini P., Fibroblast migration and collagen deposition during dermal wound healing: mathematical modelling and clinical implications. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences, 2006. 364(1843): p. 1385-1405. |