博碩士論文 107324067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.223.209.114
姓名 游育典(Yu-Tien Yu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超音波噴塗結合真空萃取技術於大氣環境下製備全無機CsPbI2Br鈣鈦礦太陽能電池
(Ultrasonic Spray-Assisted Method via Vacuum-Extraction Technique for All-inorganic CsPbI2Br Perovskite Solar Cells under Ambient Condition.)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件
★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用
★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體★ 溶液剪切力 法製備醌型噻吩並異靛藍 (DTPQ) N型小分子 半 導體於有機場效應電晶 體 應用
★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,有機無機混成鈣鈦礦太陽能電池效率急劇發展,至今年為止效率已有顯著地突破,其轉換效率已可媲美市面上主流多晶矽太陽能電池,由於其可藉由調變鈣鈦礦組成元素成分,進而調整半導體能隙大小以及表面形貌,且可以溶液製程製備太陽能電池,大幅降低製程上的成本,故作為太陽能電池裝置,鈣鈦礦是未來極具潛力的材料。但目前有機無機混成鈣鈦礦太陽能電池熱穩定性不佳,且尚缺乏可放大太陽能電池面積與連續生產之有效製程方法。
是故,本實驗透過調變鈣鈦礦結構,並使用超音波噴塗法結合真空萃取技術,在大氣環境下成功製備全無機鈣鈦礦CsPbI2Br太陽能電池。利用無機元素銫(Cs+)取代有機陽離子甲胺(MA+)、甲脒(FA+),解決有機陽離子受高溫會逸散的問題,藉此提升鈣鈦礦太陽能電池的熱穩定性。此外,製程上使用超音波噴塗設備,提供了大面積與連續製程的可能性,對於太陽能電池工業化生產做出了良好的示範。再者,結合真空萃取技術(Vacuum-Extraction Technique),有效解決結晶成核過程與退火長晶過程的競爭關係,以形成平整且光滑的高品質鈣鈦礦薄膜,在製程優化後,再由添加醋酸鉛(Pb(Ac)2)改變鈣鈦礦成膜性質,獲得最高光電轉換效率10.06%,由太陽能電池特性曲線獲得開路電壓1.12 V、短路電流密度13.99 mA cm-2及填充因子64.81%,提供了另一種形式在大氣下製備穩定的全無機鈣鈦礦太陽能電池。
摘要(英) All-inorganic cesium-based CsPbX3 perovskite solar cells are regarded as one of most promising forms due to the superior thermal stability compared to organic-inorganic hybrid perovskite. However, it has been challenging to achieve these high-quality films over large areas using scalable methods under realistic ambient conditions. Herein, we investigate the perovskite crystal growth and morphology control by vacuum-assisted strategy for ambient scalable ultrasonic spray coating fabrication of all-inorganic CsPbI2Br perovskite films. As a result, the process can produce highly crystalline, uniform, and pinhole-free CsPbI2Br films and the planar structure of perovskite solar cells based on ITO/SnO2/CsPbI2Br/PTAA/Au were fabricated. Moreover, additive engineering strategies of Lead(II) acetate (Pb(Ac)2) were used to address the defect of perovskite nanocrystal. Ultimately, the optimized CsPbI2Br perovskite solar cells shows maximum power conversion efficiency (PCE) of 10.06% with a open-circuit voltage (Voc) of 1.12 V, short-circuit current density (Jsc) of 13.99 mA cm-2, and fill factor (FF) of 64.81%. Overall, we demonstrated the high throughput ultrasonic spray-coating method as a lab‐to‐fab translation tool for solution‐processed of all-inorganic CsPbI2Br perovskite films at ambient condition.
關鍵字(中) ★ 鈣鈦礦
★ 全無機鈣鈦礦
★ 鈣鈦礦太陽能電池
★ 真空萃取
★ 超音波噴塗
關鍵字(英) ★ Perovskite
★ All-inorganic perovskite
★ Perovskite solar cells
★ Vacuum-extraction
★ Ultrasonic spray-coating
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池材料及發展 1
1-3 太陽能電池工作原理及特性 7
1-3-1 工作原理 7
1-3-2 輸出特性 (Output Characteristics) 8
第二章 文獻回顧 11
2-1 鈣鈦礦太陽能電池簡介 11
2-1-1 鈣鈦礦發展沿革 11
2-1-2 鈣鈦礦材料結構及特性 12
2-1-3 結構穩定性 14
2-1-4 鈣鈦礦元件結構 17
2-2 鈣鈦礦薄膜製備方法 18
2-2-1 一步驟沉積法 18
2-2-2 兩步驟沉積法 20
2-2-3 雙源共蒸鍍沉積法 21
2-2-4 大面積製程方法 22
2-3 全無機銫鉛鹵鈣鈦礦太陽能電池 32
2-3-1 CsPbI3鈣鈦礦太陽能電池 32
2-3-2 CsPbBr3鈣鈦礦太陽能電池 35
2-3-3 CsPbI2Br鈣鈦礦太陽能電池 38
2-4 研究動機 42
第三章 實驗與研究方法 43
3-1 實驗藥品與溶劑 43
3-1-1 實驗儀器 44
3-1-2 元件製作儀器 44
3-1-3 元件測量儀器 45
3-1-4 超音波噴塗霧化設備 47
3-2 實驗步驟及方法 48
3-2-1 鈣鈦礦前驅溶液配置 48
3-2-2 全無機鈣鈦礦太陽能電池元件製作 49
3-3 鈣鈦礦太陽能電池量測 55
第四章 結果與討論 56
4-1 真空萃取之影響 56
4-2 醋酸鉛添加濃度之影響 62
第五章 結論 70
第六章 參考資料 72
參考文獻 [1] A. K. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, B. G. Penn, Journal of Photonics for Energy 2015, 5, 057402.
[2] ScienceDaily, Science′s top 10 breakthroughs of 2013, www.sciencedaily.com/releases/2013/12/131219142223.htm, accessed.
[3] NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html, accessed.
[4] Q. Tai, K.-C. Tang, F. Yan, Energy & Environmental Science 2019, 12, 2375.
[5] K. A. Mazzio, C. K. Luscombe, Chemical Society Reviews 2014, 44, 78.
[6] A. Kojima, Teshima, K., Miyasaka, T. & Shirai, Y., in Proc. 210th ECS Meeting (ECS, 2006).
[7] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Journal of the American Chemical Society 2009, 131, 6050.
[8] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, Scientific reports 2012, 2, 591.
[9] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
[10] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nature Photonics 2014, 8, 506.
[11] J. Huang, M. Lai, J. Lin, P. Yang, Advanced Materials 2018, 30, 1802856.
[12] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
[13] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nature Physics 2015, 11, 582.
[14] A. Bhalla, R. Guo, R. Roy, Materials Research Innovations 2000, 4, 3.
[15] C. A. Randall, A. Bhalla, T. R. Shrout, L. Cross, Journal of Materials Research 1990, 5, 829.
[16] S. F. Hoefler, G. Trimmel, T. Rath, Monatshefte für Chemie-Chemical Monthly 2017, 148, 795.
[17] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chemistry of Materials 2016, 28, 284.
[18] Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 2015, 10, 355.
[19] T. Liu, K. Chen, Q. Hu, R. Zhu, Q. Gong, Advanced Energy Materials 2016, 6, 1600457.
[20] V. Burlakov, G. Eperon, H. Snaith, S. Chapman, A. Goriely, Applied Physics Letters 2014, 104, 091602.
[21] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, Advanced Functional Materials 2014, 24, 151.
[22] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nature Materials 2014, 13, 897.
[23] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nature Nanotechnology 2014, 9, 927.
[24] S. Ahmad, P. K. Kanaujia, W. Niu, J. J. Baumberg, G. Vijaya Prakash, ACS Applied Materials & Interfaces 2014, 6, 10238.
[25] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
[26] A. K. Jena, A. Kulkarni, T. Miyasaka, Chemical Reviews 2019, 119, 3036.
[27] D. Vak, K. Hwang, A. Faulks, Y. S. Jung, N. Clark, D. Y. Kim, G. J. Wilson, S. E. Watkins, Advanced Energy Materials 2015, 5, 1401539.
[28] Z. Yang, C. C. Chueh, F. Zuo, J. H. Kim, P. W. Liang, A. K. Y. Jen, Advanced Energy Materials 2015, 5, 1500328.
[29] Z. Wei, H. Chen, K. Yan, S. Yang, Angewandte Chemie International Edition 2014, 53, 13239.
[30] Y. Hu, S. Si, A. Mei, Y. Rong, H. Liu, X. Li, H. Han, Solar RRL 2017, 1, 1600019.
[31] J. E. Bishop, D. K. Mohamad, M. Wong-Stringer, A. Smith, D. G. Lidzey, Scientific Reports 2017, 7, 1.
[32] J. H. Heo, M. H. Lee, M. H. Jang, S. H. Im, Journal of Materials Chemistry A 2016, 4, 17636.
[33] J. Yao, L. Yang, F. Cai, Y. Yan, R. S. Gurney, D. Liu, T. Wang, Sustainable Energy & Fuels 2018, 2, 436.
[34] D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows, D. G. Lidzey, Advanced Energy Materials 2016, 6, 1600994.
[35] S. Gamliel, A. Dymshits, S. Aharon, E. Terkieltaub, L. Etgar, The Journal of Physical Chemistry C 2015, 119, 19722.
[36] S. Han, H. Kim, S. Lee, C. Kim, ACS Applied Materials & Interfaces 2018, 10, 7281.
[37] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. Dunbar, A. R. Buckley, D. G. Lidzey, Energy & Environmental Science 2014, 7, 2944.
[38] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, ACS Photonics 2015, 2, 680.
[39] J. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra, M. Jaysankar, C. M. De La Huerta, U. W. Paetzold, R. Gehlhaar, D. Cheyns, Journal of Materials Chemistry A 2016, 4, 3792.
[40] B. Abdollahi Nejand, S. Gharibzadeh, V. Ahmadi, H. R. Shahverdi, The Journal of Physical Chemistry C 2016, 120, 2520.
[41] H. Ishihara, S. Sarang, Y.-C. Chen, O. Lin, P. Phummirat, L. Thung, J. Hernandez, S. Ghosh, V. Tung, Journal of Materials Chemistry A 2016, 4, 6989.
[42] H. Ishihara, W. Chen, Y. C. Chen, S. Sarang, N. De Marco, O. Lin, S. Ghosh, V. Tung, Advanced Materials Interfaces 2016, 3, 1500762.
[43] P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai, C.-K. Lee, RSC Advances 2017, 7, 10985.
[44] S. C. Hong, G. Lee, K. Ha, J. Yoon, N. Ahn, W. Cho, M. Park, M. Choi, ACS Applied Materials & Interfaces 2017, 9, 7879.
[45] W. C. Chang, D. H. Lan, K. M. Lee, X. F. Wang, C. L. Liu, ChemSusChem 2017, 10, 1405.
[46] J. Zheng, M. Zhang, C. F. J. Lau, X. Deng, J. Kim, Q. Ma, C. Chen, M. A. Green, S. Huang, A. W. Ho-Baillie, Solar Energy Materials and Solar Cells 2017, 168, 165.
[47] T.-T. Duong, T.-D. Tran, Q.-T. Le, Journal of Materials Science: Materials in Electronics 2019, 30, 11027.
[48] J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong, S. Lv, J. Xiao, Y. Xu, L. Zhu, X. Xu, ACS Applied Materials & Interfaces 2014, 6, 9711.
[49] C. F. J. Lau, X. Deng, Q. Ma, J. Zheng, J. S. Yun, M. A. Green, S. Huang, A. W. Ho-Baillie, ACS Energy Letters 2016, 1, 573.
[50] H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo, Q. Meng, Nano Energy 2016, 27, 352.
[51] K. M. Boopathi, M. Ramesh, P. Perumal, Y.-C. Huang, C.-S. Tsao, Y.-F. Chen, C.-H. Lee, C.-W. Chu, Journal of Materials Chemistry A 2015, 3, 9257.
[52] F. Li, C. Bao, H. Gao, W. Zhu, T. Yu, J. Yang, G. Fu, X. Zhou, Z. Zou, Materials Letters 2015, 157, 38.
[53] X. Xia, H. Li, W. Wu, Y. Li, D. Fei, C. Gao, X. Liu, ACS Applied Materials & Interfaces 2015, 7, 16907.
[54] N. Mohammadian, A. Alizadeh, A. Moshaii, S. Gharibzadeh, A. Alizadeh, R. Mohammadpour, D. Fathi, Thin Solid Films 2016, 616, 754.
[55] F. Li, C. Bao, W. Zhu, B. Lv, W. Tu, T. Yu, J. Yang, X. Zhou, Y. Wang, X. Wang, Journal of Materials Chemistry A 2016, 4, 11372.
[56] F. Zabihi, M.-R. Ahmadian-Yazdi, M. Eslamian, Nanoscale Research Letters 2016, 11, 71.
[57] F. Shao, L. Xu, Z. Tian, Y. Xie, Y. Wang, P. Sheng, D. Wang, F. Huang, RSC Advances 2016, 6, 42377.
[58] M. Habibi, M.-R. Ahmadian-Yazdi, M. Eslamian, Journal of Photonics for Energy 2017, 7, 022003.
[59] S. Kavadiya, D. M. Niedzwiedzki, S. Huang, P. Biswas, Advanced Energy Materials 2017, 7, 1700210.
[60] M. Remeika, S. R. Raga, S. Zhang, Y. Qi, Journal of Materials Chemistry A 2017, 5, 5709.
[61] S. Bag, J. R. Deneault, M. F. Durstock, Advanced Energy Materials 2017, 7, 1701151.
[62] G. Chai, S. Wang, Z. Xia, S. Luo, C. Teng, T. Yang, Z. Nie, T. Meng, H. Zhou, Semiconductor Science and Technology 2017, 32, 074003.
[63] K.-C. Hsu, C.-H. Lee, T.-F. Guo, T.-H. Chen, T.-H. Fang, Y.-S. Fu, Organic Electronics 2018, 57, 221.
[64] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, Crystal Growth & Design 2013, 13, 2722.
[65] Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang, Y. Zhao, Joule 2018, 2, 2065.
[66] U.-G. Jong, C.-J. Yu, Y.-S. Kim, Y.-H. Kye, C.-H. Kim, Physical Review B 2018, 98, 125116.
[67] Z. Song, C. Wang, A. B. Phillips, C. R. Grice, D. Zhao, Y. Yu, C. Chen, C. Li, X. Yin, R. J. Ellingson, Sustainable Energy & Fuels 2018, 2, 2460.
[68] S. Mariotti, O. S. Hutter, L. J. Phillips, P. J. Yates, B. Kundu, K. Durose, ACS Applied Materials & Interfaces 2018, 10, 3750.
[69] H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim, J. Y. Kim, Nano Energy 2014, 7, 80.
[70] G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith, Journal of Materials Chemistry A 2015, 3, 19688.
[71] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, Science 2016, 354, 92.
[72] Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, S. Zhang, ACS Energy Letters 2017, 2, 2219.
[73] S. Xiang, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, H. Chen, Nanoscale 2018, 10, 9996.
[74] C. F. J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, J. Bing, B. Wilkinson, L. Hu, R. Patterson, Journal of Materials Chemistry A 2018, 6, 5580.
[75] A. K. Jena, A. Kulkarni, Y. Sanehira, M. Ikegami, T. Miyasaka, Chemistry of Materials 2018, 30, 6668.
[76] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel, Y. Zhao, Science Advances 2017, 3, e1700841.
[77] P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Nature Communications 2018, 9, 1.
[78] P. Luo, W. Xia, S. Zhou, L. Sun, J. Cheng, C. Xu, Y. Lu, The Journal of Physical Chemistry Letters 2016, 7, 3603.
[79] Y. G. Kim, T.-Y. Kim, J. H. Oh, K. S. Choi, Y.-J. Kim, S. Y. Kim, Physical Chemistry Chemical Physics 2017, 19, 6257.
[80] E. M. Sanehira, A. R. Marshall, J. A. Christians, S. P. Harvey, P. N. Ciesielski, L. M. Wheeler, P. Schulz, L. Y. Lin, M. C. Beard, J. M. Luther, Science Advances 2017, 3, eaao4204.
[81] Y. Wang, T. Zhang, M. Kan, Y. Zhao, Journal of the American Chemical Society 2018, 140, 12345.
[82] B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Nature Communications 2018, 9, 1.
[83] S. Xiang, Z. Fu, W. Li, Y. Wei, J. Liu, H. Liu, L. Zhu, R. Zhang, H. Chen, ACS Energy Letters 2018, 3, 1824.
[84] B. Zhao, S.-F. Jin, S. Huang, N. Liu, J.-Y. Ma, D.-J. Xue, Q. Han, J. Ding, Q.-Q. Ge, Y. Feng, Journal of the American Chemical Society 2018, 140, 11716.
[85] Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen, J. Huang, Joule 2017, 1, 371.
[86] L. A. Frolova, D. V. Anokhin, A. A. Piryazev, S. Y. Luchkin, N. N. Dremova, K. J. Stevenson, P. A. Troshin, The Journal of Physical Chemistry Letters 2017, 8, 67.
[87] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, Journal of the American Chemical Society 2016, 138, 15829.
[88] J. Duan, Y. Zhao, B. He, Q. Tang, Angewandte Chemie International Edition 2018, 57, 3787.
[89] M. Kulbak, D. Cahen, G. Hodes, The Journal of Physical Chemistry Letters 2015, 6, 2452.
[90] X. Chang, W. Li, L. Zhu, H. Liu, H. Geng, S. Xiang, J. Liu, H. Chen, ACS Applied Materials & Interfaces 2016, 8, 33649.
[91] M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes, D. Cahen, The Journal of Physical Chemistry Letters 2016, 7, 167.
[92] J. Duan, T. Hu, Y. Zhao, B. He, Q. Tang, Angewandte Chemie International Edition 2018, 57, 5746.
[93] J. Shi, X. Xu, D. Li, Q. Meng, Small 2015, 11, 2472.
[94] Y. Li, J. Duan, H. Yuan, Y. Zhao, B. He, Q. Tang, Solar RRL 2018, 2, 1800164.
[95] J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Advanced Energy Materials 2018, 8, 1802346.
[96] B. Li, Y. Zhang, L. Zhang, L. Yin, Journal of Power Sources 2017, 360, 11.
[97] K. C. Tang, P. You, F. Yan, Solar RRL 2018, 2, 1800075.
[98] B. Chen, X. Zheng, Y. Bai, N. P. Padture, J. Huang, Advanced Energy Materials 2017, 7, 1602400.
[99] R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke, M. D. McGehee, The Journal of Physical Chemistry Letters 2016, 7, 746.
[100] R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad, D. T. Moore, Advanced Energy Materials 2016, 6, 1502458.
[101] J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim, J. H. Park, Nano Letters 2017, 17, 2028.
[102] H. Rao, S. Ye, F. Gu, Z. Zhao, Z. Liu, Z. Bian, C. Huang, Advanced Energy Materials 2018, 8, 1800758.
[103] S. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba, A. Abate, Advanced Energy Materials 2018, 8, 1802060.
[104] C. Y. Chen, H. Y. Lin, K. M. Chiang, W. L. Tsai, Y. C. Huang, C. S. Tsao, H. W. Lin, Advanced Materials 2017, 29, 1605290.
[105] J. K. Nam, M. S. Jung, S. U. Chai, Y. J. Choi, D. Kim, J. H. Park, The Journal of Physical Chemistry Letters 2017, 8, 2936.
[106] C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang, ACS Energy Letters 2017, 2, 2319.
[107] G. Yin, H. Zhao, H. Jiang, S. Yuan, T. Niu, K. Zhao, Z. Liu, S. Liu, Advanced Functional Materials 2018, 28, 1803269.
[108] L. Zhang, B. Li, J. Yuan, M. Wang, T. Shen, F. Huang, W. Wen, G. Cao, J. Tian, The Journal of Physical Chemistry Letters 2018, 9, 3646.
[109] C. Dong, X. Han, Y. Zhao, J. Li, L. Chang, W. Zhao, Solar RRL 2018, 2, 1800139.
[110] Q. Zeng, X. Zhang, X. Feng, S. Lu, Z. Chen, X. Yong, S. A. Redfern, H. Wei, H. Wang, H. Shen, Advanced Materials 2018, 30, 1705393.
[111] J. Yuan, L. Zhang, C. Bi, M. Wang, J. Tian, Solar RRL 2018, 2, 1800188.
[112] L. Yan, Q. Xue, M. Liu, Z. Zhu, J. Tian, Z. Li, Z. Chen, Z. Chen, H. Yan, H. L. Yip, Advanced Materials 2018, 30, 1802509.
[113] J. Zhang, D. Bai, Z. Jin, H. Bian, K. Wang, J. Sun, Q. Wang, S. Liu, Advanced Energy Materials 2018, 8, 1703246.
[114] C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, Journal of the American Chemical Society 2018, 140, 3825.
[115] D. Bai, H. Bian, Z. Jin, H. Wang, L. Meng, Q. Wang, S. F. Liu, Nano Energy 2018, 52, 408.
[116] Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, ChemSusChem 2019, 12, 983.
[117] J. Zhang, Z. Jin, L. Liang, H. Wang, D. Bai, H. Bian, K. Wang, Q. Wang, N. Yuan, J. Ding, Advanced Science 2018, 5, 1801123.
[118] H. Jiang, J. Feng, H. Zhao, G. Li, G. Yin, Y. Han, F. Yan, Z. Liu, S. Liu, Advanced Science 2018, 5, 1801117.
[119] Z. Zeng, J. Zhang, X. Gan, H. Sun, M. Shang, D. Hou, C. Lu, R. Chen, Y. Zhu, L. Han, Advanced Energy Materials 2018, 8, 1801050.
[120] W. Xiang, Z. Wang, D. J. Kubicki, W. Tress, J. Luo, D. Prochowicz, S. Akin, L. Emsley, J. Zhou, G. Dietler, Joule 2019, 3, 205.
[121] L. Ye, H. Wang, Y. Wei, P. Guo, X. Yang, Q. Ye, H. Wang, ACS Applied Energy Materials 2019, 3, 658.
[122] T. Wang, Y. Yang, Y. Zhang, L. Nian, P. Wang, Y. Qian, Q. Rong, G. Zhou, N. Li, ACS Applied Materials & Interfaces 2020, 12, 21539.
[123] F. Deng, X. Li, X. Lv, J. Zhou, Y. Chen, X. Sun, Y.-Z. Zheng, X. Tao, J.-F. Chen, ACS Applied Energy Materials 2019, 3, 401.
[124] X. Yang, H. Yang, X. Hu, W. Li, Z. Fang, K. Zhang, R. Huang, J. Li, Z. Yang, Y. Song, Journal of Materials Chemistry A 2020, 8, 5308.
[125] C. Duan, J. Cui, M. Zhang, Y. Han, S. Yang, H. Zhao, H. Bian, J. Yao, K. Zhao, Z. Liu, Advanced Energy Materials 2020, 2000691.
[126] Z. Guo, A. K. Jena, I. Takei, G. M. Kim, M. A. Kamarudin, Y. Sanehira, A. Ishii, Y. Numata, S. Hayase, T. Miyasaka, Journal of the American Chemical Society 2020.
[127] S. Öz, A. K. Jena, A. Kulkarni, K. Mouri, T. Yokoyama, I. Takei, F. Ünlü, S. Mathur, T. Miyasaka, ACS Energy Letters 2020, 5, 1292.
[128] F. Cheng, X. Jing, R. Chen, J. Cao, J. Yan, Y. Wu, X. Huang, B. Wu, N. Zheng, Inorganic Chemistry Frontiers 2019, 6, 2458.
[129] Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu, S. Liu, Advanced Functional Materials 2020, 30, 1909972.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明