博碩士論文 107324068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.118.151.112
姓名 趙冠傑(Guan-Jie Zhao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 BiVO4為基底的光陽極應用在選擇性氧化HMF及其衍生物
(Photoelectrochemical selective oxidation of HMF derivatives on BiVO4-based photoanode)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-17以後開放)
摘要(中) 光電化學系統(PEC)可以像自然界通過光合作用一樣直接利用半導體
電極中的光生電子-電動對來催化反應,若使用生物質當反應物進行選擇性氧化來生成高經濟價值的產物,將是一道對環境友善且節省能源的製程。我們 究 嘗 試 開 發 吸 收 可 見 光 的 光 陽 極 , 並 應 用 在 5- 羥甲基糠醛 (5-hydroxymethylfurfural, HMF)的選擇性氧化上。本研究首先用旋轉塗佈法製備 BiVO4 薄膜光電極,並經由塗佈緩衝層、保護層和裝載共觸媒來提升光電極之性能。緩衝層改善了 BiVO4 表面的性質,使晶粒更為均一完整,在1.2 V vs. RHE 下,光電流密度提升 33%,且 IPCE 在波段 400 nm 時從 16%提升至 34%;NiOx 共觸媒的裝載提升了氧化動力,讓水解反應之起始電位往還原方向 0.2 V vs. RHE,但在高偏壓區的電流卻出現被抑制的情形,代表也存在界面與表面的問題需要克服;保護層 TiO2 的性質有類似透明導電氧化物(Transparent conductive oxide)的作用,能有效降低半導體與電解液界面之電子-電洞對再結合。而後我們選用光電流密度最高的 BiVO4/SnO2光電極在不同離子電解液與 pH 值環境下測試穩定性,發現在 pH=10 的硼酸鈉緩衝溶液有最好的表現性,並在此進行 HMF 之選擇性氧化反應。我們藉由 TEMPO 當反應媒介,成功轉化出產物 FDCA,在反應總載子數為 78 庫倫後,HMF 有 74%的轉化率,FFCA 與 FDCA 分別有 29%、30%的產率,40%、41%的選擇率,法拉第效率為 91%。而由濃度變化的計算,我們得出 HMF 為一級反應。
摘要(英) The photoelectrochemical (PEC) can directly utilize the photo-generatedelectron-hole pair in semiconductor electrode to catalyze the reaction like nature
through photosynthesis. If the biomass is used as the reactant for selectiveoxidation to generate a product of high economic value, it will be anenvironmentally friendly and energy-saving process. We tried to develop a
photoanode that absorbs visible light and applies it to the selective oxidation of 5-hydroxymethylfurfural (HMF). In this study, the BiVO4 thin film photoelectrode
was first prepared by spin coating, and the performance of the photoelectrode was
improved by coating a buffer layer, a protective layer, and a co-catalyst. The buffer
layer improves the properties of the BiVO4 structure, making the grain moreuniform and complete. At 1.2 V vs. RHE, the photocurrent is increased by 33%,and the IPCE is increased from 16% to 34% at 400 nm. Loading of the NiOx cocatalyst improves the oxidation kinetics, shifting the oneset potential to thenegative side by 0.2 V vs. RHE of the water splitting reaction, but the current in
the high-bias region is suppressed, indicating that there are also problems with theinterface and surface. The property of the protective layer TiO2 is similar to that
of a transparent conductive oxide (TCO), which can effectively reduce the
recombination of electron-hole pairs at the interface between the semiconductorand the electrolyte.
After that, we selected the BiVO4/SnO2 photoelectrode with the highestphotocurrent properties to test the stability under different electrolytes and pH
environments, and found that the borate buffer solution at pH=10 showed the best performance.
By using TEMPO as the mediator, we have demonstrated a electrochemicaloxidation of HMF into FDCA. When 78 C was passed, HMF had a conversion
rate of 74%, FFCA and FDCA had 29%, 30% yield, and 40%, 41% selectivity,Faraday efficiency is 91%. From the calculation of the concentration change, we
conclude that HMF is a first order reaction.
關鍵字(中) ★ 光陽極
★ 選擇性氧化
★ 5-羥甲基糠醛
關鍵字(英) ★ BiVO4
★ selectove oxidation
★ HMF
論文目次 目錄
摘要................................................................................................................i
Abstract .........................................................................................................ii
誌謝..............................................................................................................iv
目錄............................................................................................................... v
圖目錄........................................................................................................viii
表目錄.........................................................................................................xii
第一章、 緒論 ........................................................................................... 1
1-1 前言................................................................................................. 1
1-2 光觸媒發展 .................................................................................... 3
1-3 研究動機......................................................................................... 5
第二章、 文獻回顧 ................................................................................... 7
2-1 半導體光觸媒 ................................................................................ 7
2-1-1 半導體................................................................................. 7
2-1-2 光觸媒................................................................................. 9
2-1-3 半導體與電解液界面........................................................ 9
2-2 光電化學分解水 .......................................................................... 11
2-3 光電效率....................................................................................... 12
2-4 BiVO4半導體光觸媒................................................................... 13
2-4-1 BiVO4性質........................................................................ 13
2-4-2 BiVO4優缺點.................................................................... 14
2-4-3 BiVO4改善方法................................................................ 16
2-4-3-1 表面型態控制....................................................... 16
vi
2-4-3-2 微量元素摻雜....................................................... 16
2-4-3-3 鈍化層................................................................... 17
2-4-3-4 共觸媒................................................................... 18
2-4-3-5 緩衝層................................................................... 19
2-5 電解液對 BiVO4的影響............................................................. 21
2-6 光催生質物與選擇性氧化 ......................................................... 22
2-6-1 光催化生質物.................................................................. 22
2-6-2 選擇性氧化...................................................................... 22
第三章、 研究方法 ................................................................................. 25
3-1 實驗藥品 ..................................................................................... 25
3-2 實驗儀器 ..................................................................................... 28
3-3 實驗步驟 ..................................................................................... 30
3-3-1 光電極製備...................................................................... 30
3-3-1-1 BiVO4 電極........................................................... 30
3-3-1-2 BiVO4/SnO2 電極 ................................................. 31
3-3-1-3 TiO2/BiVO4/SnO2 電極......................................... 31
3-3-1-4 NiOx/BiVO4/SnO2 電極........................................ 31
3-3-1-5 NiOx/TiO2/BiVO4/SnO2 電極................................ 32
3-3-2 光電化學測量.................................................................. 32
3-3-3 選擇性氧化之電解液....................................................... 33
3-3-4 選擇性氧化....................................................................... 33
3-3-4-1 反應系統............................................................... 33
3-3-4-2 液相層析分析....................................................... 34
第四章、 結果與討論 ............................................................................. 35
vii
4-1 BiVO4光電極............................................................................... 36
4-1-1 基本性質分析................................................................... 36
4-1-2 電化學分析....................................................................... 41
4-1-3 光電效率探討.................................................................. 43
4-2 BiVO4/SnO2 光電極.................................................................... 46
4-2-1 基本性質分析................................................................... 46
4-2-2 電化學分析....................................................................... 48
4-3 NiOx/ BiVO4/SnO2 光電極.......................................................... 51
4-3-1 基本性質分析................................................................... 51
4-3-2 電化學分析....................................................................... 54
4-4 TiO2/ BiVO4/SnO2 光電極 .......................................................... 58
4-4-1 基本性質分析................................................................... 58
4-4-2 電化學分析....................................................................... 60
4-5 NiOx/TiO2/ BiVO4/SnO2 光電極................................................. 63
4-5-1 電化學分析...................................................................... 63
4-6 最適化反應環境 .......................................................................... 66
4-7 選擇性氧化 .................................................................................. 70
第五章、 結論 ......................................................................................... 75
5-1 結論............................................................................................... 75
5-2 未來展望 ..................................................................................... 76
參考文獻..................................................................................................... 77
附錄............................................................................................................. 83
參考文獻 1. Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current
status, future prospects and their enabling technology. Renewable and
Sustainable Energy Reviews. 2014;39:748-64.
2. Khare A. A critical review on the efficiency improvement of upconversion
assisted solar cells. Journal of Alloys and Compounds. 2020;821.
3. Bernadette K. McCabe TS. Integrated biogas systems : Local applications of
anaerobic digestion towards integrated sustainable solutions IEA Bioenergy;
2018.
4. 范 振 誠 、 陳 明 君 . 循環經濟當道 生 質 塑 膠 潛 力 大
https://csrone.com/news/5409
5. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Photoelectrochemical devices
for solar water splitting - materials and challenges. Chemical Society Reviews
2017;46(15):4645-60.
6. Müllejans H, Ioannides A, Kenny R, Zaaiman W, Ossenbrink HA, Dunlop
ED. Spectral mismatch in calibration of photovoltaic reference devices by
global sunlight method. Measurement Science and Technology.
2005;16(6):1250-4.
7. 郭瑋汝. 光陽極在可見光下進行醇類選擇性氧化的應用. 中央大學 2018.
8. 黃英婷、汪進忠. 2015: 工業材料雜誌.
9. Cha HG, Choi KS. Combined biomass valorization and hydrogen production
in a photoelectrochemical cell. Nature Chemistry 2015;7(4):328-33.
10. Boratto MH. Semiconducting and Insulating oxides applied to electronic
device 2018.
11. Rajeshwar K. Encyclopedia of Electrochemistry. 2007.
12. Honda A FK. Electrochemical Photolysis of Water at a Semiconductor
Electrode. Nature. 1972;238.
13. Xiaoli C. Flat Band Potential of Semiconductor Electrodes. 化學通報.
2017;80.12.
78
14. Xu XT, Pan L, Zhang X, Wang L, Zou JJ. Rational Design and Construction
of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen
Evolution: A Comprehensive Review. Advanced Science
2019;6(2):1801505.
15. Wang G, Ling Y, Wang H, Xihong L, Li Y. Chemically modified
nanostructures for photoelectrochemical water splitting. Journal of
Photochemistry and Photobiology C: Photochemistry Reviews. 2014;19:35-
51.
16. Zhebo Chen HND, Eric Miller Photoelectrochemical Water Splitting
Standards, Experimental Methods, and Protocols: springer; 2013.
17. Kudo A, Ueda K, Kato H, Mikami I. Photocatalytic O2 evolution under visible
light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters.
1998;53(3):229-30.
18. A M, J M, Ashokkumar M, Arunachalam P. A review on BiVO4 photocatalyst:
Activity enhancement methods for solar photocatalytic applications. Applied
Catalysis A: General. 2018;555:47-74.
19. Bhat SSM, Jang HW. Recent Advances in Bismuth-Based Nanomaterials for
Photoelectrochemical Water Splitting. ChemSusChem. 2017;10(15):3001-18.
20. He Ra, Cao S, Zhou P, Yu J. Recent advances in visible light Bi-based
photocatalysts. Chinese Journal of Catalysis. 2014;35(7):989-1007.
21. Hu Y, Fan J, Pu C, Li H, Liu E, Hu X. Facile synthesis of double cone-shaped
Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic
activity for environmental purification. Journal of Photochemistry and
Photobiology A: Chemistry. 2017;337:172-83.
22. Kim JH, Lee JS. Elaborately Modified BiVO4 Photoanodes for Solar Water
Splitting. Advanced Materials 2019;31(20):e1806938.
23. Kronawitter CX, Vayssieres L, Shen S, Guo L, Wheeler DA, Zhang JZ. A
perspective on solar-driven water splitting with all-oxide heteronanostructures. Energy & Environmental Science. 2011;4(10).
24. Walter MGW, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.;
Lewis, N.S. Solar Water Splitting Cells. Chemical Reviews 2010;110:
6446–73.
25. Abdi FF, Firet N, van de Krol R. Efficient BiVO4 Thin Film Photoanodes
Modified with Cobalt Phosphate Catalyst and W-doping. ChemCatChem.
2013;5(2):490-6.
26. Sinclair TS, Hunter BM, Winkler JR, Gray HB, Müller AM. Factors affecting
bismuth vanadate photoelectrochemical performance. Materials Horizons.
2015;2(3):330-7.
79
27. Zhou M, Bao J, Xu Y, Zhang J, Xie J, Guan M, et al. Photoelectrodes Based
upon Mo:BiVO4 Inverse Opals for Photoelectrochemical Water Splitting.
ACS Nano. 2014;8(7):7088-98.
28. Abdi FF, Savenije TJ, May MM, Dam B, van de Krol R. The Origin of Slow
Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved
Microwave Conductivity Study. The Journal of Physical Chemistry Letters.
2013;4(16):2752-7.
29. Gan J, Lu X, Tong Y. Towards highly efficient photoanodes: boosting
sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale.
2014;6(13):7142-64.
30. Toma FM, Cooper JK, Kunzelmann V, McDowell MT, Yu J, Larson
DM,Borys NJ, Abelyan C,Beeman JW, Yu KM, Yang J, Chen L, Shaner MR,
spurgeon J, Houle FA, Persson KA, Sharp LD
Mechanistic insights into chemical and photochemical transformations of
bismuth vanadate photoanodes. Nature Communications. 2016;7:12012.
31. McDonald KJ, Choi K-S. A new electrochemical synthesis route for a BiOI
electrode and its conversion to a highly efficient porous BiVO4 photoanode
for solar water oxidation. Energy & Environmental Science. 2012;5(9).
32. Kim TW, Choi K-S. Nanoporous BiVO4 Photoanodes with Dual-Layer
Oxygen Evolution Catalysts for Solar Water Splitting. Science.
2014;343(6174):990.
33. Hernández S, Gerardi G, Bejtka K, Fina A, Russo N. Evaluation of the charge
transfer kinetics of spin-coated BiVO4 thin films for sun-driven water
photoelectrolysis. Applied Catalysis B: Environmental. 2016;190:66-74.
34. Pattengale B, Ludwig J, Huang J. Atomic Insight into the W-Doping Effect
on Carrier Dynamics and Photoelectrochemical Properties of BiVO4
Photoanodes. The Journal of Physical Chemistry C. 2016;120(3):1421-7.
35. Park Y, Kang D, Choi KS. Marked enhancement in electron-hole separation
achieved in the low bias region using electrochemically prepared Mo-doped
BiVO4 photoanodes. Physical Chemistry Chemical Physics 2014;16(3):1238-
46.
36. Tolod K, Hernández S, Russo N. Recent Advances in the BiVO4
Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes
and Scale-Up Challenges. Catalysts. 2017;7(12).
37. Bai S, Yin W, Wang L, Li Z, Xiong Y. Surface and interface design in
cocatalysts for photocatalytic water splitting and CO2 reduction. RSC
Advances. 2016;6(62):57446-63.
80
38. Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park
JH. Efficient photoelectrochemical hydrogen production from bismuth
vanadate-decorated tungsten trioxide helix nanostructures. Nature
Communications. 2014;5:4775.
39. Kalanur SS, Yoo I-H, Park J, Seo H. Insights into the electronic bands of
WO3/BiVO4/TiO2, revealing high solar water splitting efficiency. Journal of
Materials Chemistry A. 2017;5(4):1455-61.
40. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM. Cobaltphosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for
solar water oxidation. Energy & Environmental Science. 2011;4(12):5028-34.
41. Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S,Makita K,
Sugaya T, Matsui T, Fujita D, Tosa M, Kondo M, Kitamori T.
Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods
with ultimate water splitting efficiency. Scientific Reports. 2015;5:11141.
42. Lee SA, Lee TH, Kim C, Lee MG, Choi M-J, Park H, Choi S, OH J, Jang
HW. Tailored NiOx/Ni Cocatalysts on Silicon for Highly Efficient Water
Splitting Photoanodes via Pulsed Electrodeposition. ACS Catalysis.
2018;8(8):7261-9.
43. Kim TW, Choi K-S. Nanoporous BiVO4 Photoanodes with Dual-Layer
Oxygen Evolution Catalysts for Solar Water Splitting. Science. 2014.
44. Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in
neutral water containing phosphate and Co2+. Science. 2008;321(5892):1072-
5.
45. Choi S, Balamurugan M, Lee KG, Cho KH, Park S, Seo H,Nam KT.
Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide
Nanoparticles in a CO2-Saturated Electrolyte for Paired Electrolysis. The
Journal of Physical Chemistry Letters 2020;11(8):2941-8.
46. Byun S, Kim B, Jeon S, Shin B. Effects of a SnO2 hole blocking layer in a
BiVO4-based photoanode on photoelectrocatalytic water oxidation. Journal
of Materials Chemistry A. 2017;5(15):6905-13.
47. Lee DK, Choi K-S. Enhancing long-term photostability of BiVO4
photoanodes for solar water splitting by tuning electrolyte composition.
Nature Energy. 2017;3(1):53-60.
48. Chadderdon DJ, Wu LP, McGraw ZA, Panthani M, Li W. Heterostructured
Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPO‐
81
Mediated Oxidation of 5‐Hydroxymethylfurfural. ChemElectroChem.
2019;6(13):3387-92.
49. Roylance JJ, Kim TW, Choi K-S. Efficient and Selective Electrochemical and
Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-
Bis(hydroxymethyl)furan using Water as the Hydrogen Source. ACS
Catalysis. 2016;6(3):1840-7.
50. Özcan L, Yalçın P, Alagöz O, Yurdakal S. Selective photoelectrocatalytic
oxidation of 5-(hydroxymethyl)-2-furaldehyde in water by using Pt loaded
nanotube structure of TiO2 on Ti photoanodes. Catalysis Today.
2017;281:205-13.
51. Yurdakal S, Tek BS, Alagöz O, Augugliaro V, Loddo V, Palmisano G.
Photocatalytic Selective Oxidation of 5-(Hydroxymethyl)-2-furaldehyde to
2,5-Furandicarbaldehyde in Water by Using Anatase, Rutile, and Brookite
TiO2 Nanoparticles. ACS Sustainable Chemistry & Engineering.
2013;1(5):456-61.
52. Ventura M, Dibenedetto A, Aresta M. Heterogeneous catalysts for the
selective aerobic oxidation of 5-hydroxymethylfurfural to added value
products in water. Inorganica Chimica Acta. 2018;470:11-21.
53. Wu Q, He Y, Zhang H, Feng Z, Wu Y, Wu T. Photocatalytic selective
oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran
on metal-free g-C3N4 under visible light irradiation. Molecular Catalysis.
2017;436:10-8.
54. Colmenares JC, Luque R. Heterogeneous photocatalytic nanomaterials:
prospects and challenges in selective transformations of biomass-derived
compounds. Chemical Society Reviews. 2014;43(3):765-78.
55. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS. Selectivity Enhancement in
Heterogeneous Photocatalytic Transformations. Chemical Reviews.
2017;117(3):1445-514.
56. Tan HL, Amal R, Ng YH. Alternative strategies in improving the
photocatalytic and photoelectrochemical activities of visible light-driven
BiVO4: a review. Journal of Materials Chemistry A. 2017;5(32):16498-521.
57. Loiudice A, Cooper JK, Hess LH, Mattox TM, Sharp ID, Buonsanti R.
Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite
Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters.
2015;15(11):7347-54.
58. Seabold JA, Choi K-S. Efficient and Stable Photo-Oxidation of Water by a
Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen
Evolution Catalyst. Journal of the American Chemical Society.
82
2012;134(4):2186-92.
59. Lee DK, Choi K-S. Enhancing long-term photostability of BiVO4
photoanodes for solar water splitting by tuning electrolyte composition.
Nature Energy. 2018;3(1):53-60.
60. Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH,Lee J, Lee JS.
Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode
for photoelectrochemical water splitting. Journal of Catalysis. 2014;317:126-
34.
61. Nair V, Perkins CL, Lin Q, Law M. Textured nanoporous Mo:BiVO4
photoanodes with high charge transport and charge transfer quantum
efficiencies for oxygen evolution. Energy & Environmental Science.
2016;9(4):1412-29.
62. Liang Y, Messinger J. Improving BiVO4 photoanodes for solar water splitting
through surface passivation. Physical Chemistry Chemical Physics.
2014;16(24):12014-20.
63. Ji T, Li Z, Liu C, Lu X, Li L, Zhu J. Niobium-doped TiO2 solid acid catalysts:
Strengthened interfacial polarization, amplified microwave heating and
enhanced energy efficiency of hydroxymethylfurfural production. Applied
Catalysis B: Environmental. 2019;243:741-9.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明