參考文獻 |
Abbas, N., Hussain, M., Russo, N., Saracco, G., 2011. Studies on the activity and deactivation of novel optimized TiO2 nanoparticles for the abatement of VOCs. Chemical Engineering Journal, 175, 330–340.
Ângelo, J., Andrade, L., Madeira, L. M., Mendes A., 2013. An overview of photocatalysis phenomena applied to NOx abatement. Journal of Environmental Management, 129, 522–539.
Arabi, N., Jauberthie, R., Chelghou, N., Molez, L., 2015. Formation of C-S-H in calcium hydroxide–blast furnace slag– quartz–water system in autoclaving conditions. Advances in Cement Research, 27, 3, 153–162.
Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palmisano, L., Schiavello, M., 1999. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: mechanistic aspects and FT-IR investigation. Applied Catalysis B: Environmental, 20, 15–27 .
Basso, A., Battisti, A. P., Moreira, R. F. P. M., José, H. J., 2018. Photocatalytic effect of addition of TiO2 to acrylic-based paint for passive toluene degradation. Environmental Technology, 1–10.
Binas, V., Venieri, D., Kotzias, D., Kiriakidis, G., 2017. Modified TiO2 based photocatalysts for improved air and health quality. J Materiomics, 3, 3–16.
Boyjoo, Y., Sun, H., Liu, J., Pareek, V. K., Wang, S., 2017. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chemical Engineering Journal, 310, 537–559.
Cai, L., Ma, B., Li, X., Lv, Y., Liu, Z., Jian, S., 2016a. Mechanical and hydration characteristics of autoclaved aerated concrete (AAC) containing iron-tailings: Effect of content and fineness. Construction and Building Materials, 128, 361–372.
Cai, L., Ding, L., Luo, H., Yi, X., 2019a. Preparation of autoclave concrete from basaltic lunar regolith simulant: Effect of mixture and manufacture process. Construction and Building Materials, 207, 373–386.
Cai, L., Li, X., Liu, W., Ma, B., Lv, Y., 2019b. The slurry and physical-mechanical performance of autoclaved aerated concrete with high content solid wastes: Effect of grinding process. Construction and Building Materials, 218, 28–39.
Cai, Z., Ma, X., Fang, S., Yu, Z., Lin, Y., 2016b. Thermogravimetric analysis of the co-combustion of eucalyptus residues and paper mill sludge. Applied Thermal Engineering, 106, 938–943.
Calia, A., Lettieri, M., Masieri, M., 2016. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. Building and Environment, 110, 1–10.
Calia, A., Lettieri, M., Masieri, M., Pal, S., Licciulli, A., Arima, V., 2017. Limestones coated with photocatalytic TiO2 to enhance building surface with self-cleaning and depolluting abilities. Journal of Cleaner Production, 165, 1036–1047.
Cárdenas, C., Tobon, J. I., Garcia, C., Vila, J., 2012. Functionalized building materials: Photocatalytic abatement of NOx by cement pastes blended with TiO2 nanoparticles. Construction and Building Materials, 36, 820–825.
Carmona-Quiroga, P. M., Martínez-Ramírez, S., Viles, H.A., 2018. Efficiency and durability of a self-cleaning coating on concrete and stones under both natural and artificial ageing trials. Applied Surface Science, 433, 312–320.
Chaipanich, A., Chindaprasirt, P., 2015. The properties and durability of autoclaved aerated concrete masonry blocks. Eco-efficient Masonry Bricks and Blocks, 215–230.
Chen, H., Nanayakkara, C. E., Grassian, V. H., 2012. Titanium Dioxide Photocatalysis in Atmospheric Chemistry. Chemical Reviews, 112, 5919–5948.
Chen, R., Li, Y., Xiang, R., Li, S., 2016. Effect of particle size of fly ash on the properties of lightweight insulation materials. Construction and Building Materials, 123, 120–126.
Chen, Y. L., Chang, J. E., Lai, Y. C., Chou, M. I. M., 2017. A comprehensive study on the production of autoclaved aerated concrete: Effects of silica-lime-cement composition and autoclaving conditions. Construction and Building Materials, 153, 622–629.
Chiang, K. Y., Chou, P. H., Hua, C. R., Chien, K. L., Cheeseman, C., 2009. Lightweight bricks manufactured from water treatment sludge and rice husks. Journal of Hazardous Materials, 171, 76–82.
Cui, M., Pan, S., Tang, Z., Chen, X., Qiao, X., Xu, Q., 2017. Physiochemical properties of n-n heterostructured TiO2/Mo-TiO2 composites and their photocatalytic degradation of gaseous toluene. Chemical Speciation & Bioavailability, 29, 60–69.
Debono, O., Hequet, V., Coq, L. L., Locoge, N., Thevenet, F., 2017. VOC ternary mixture effect on ppb level photocatalytic oxidation: Removal kinetic, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 218, 359–369.
Dhada, I., Nagar, P. K., Sharma, M., 2015. Challenges of TiO2 Based Photooxidation of Volatile Organic Compounds: Designing, Coating, and Regenerating Catalyst. Industrial & Engineering Chemistry Research, 54, 5381−5387.
Diebold, U., 2003. The surface science of titanium dioxide. Surface Science Reports, 48, 53–229.
El-Didamony, H., Amer, A. A., Mohammed, M. S., El-Hakim, M. A., 2019. Fabrication and properties of autoclaved aerated concrete containing agriculture and industrial solid wastes. Journal of Building Engineering, 22, 528–538.
Ferrándiz-Mas, V., Bond, T., García-Alcocel, E., Cheeseman, C. R., 2014. Lightweight mortars containing expanded polystyrene and paper sludge ash. Construction and Building Materials, 61, 285–292.
Fujishima, A., Rao, T. N., Tryk, D. A., 2000. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1–21.
Gaya, U. I., Abdullah, A.H., 2008. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1–12.
Gluth, G. J. G., Lehmann, C., Rübner, K., Kühne, H. C., 2014. Reaction products and strength development of wastepaper sludge ash and the influence of alkalis. Cement and Concrete Composites, 45, 82–88.
Goel, G., & Kalamdhad, A. S., 2017. An investigation on use of paper mill sludge in brick manufacturing. Construction and Building Materials, 148, 334–343.
Guo, M. Z., Ling, T. C., Poon, C.S., 2017. Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors. Cement and Concrete Composites, 83, 279–289.
Hamad, A. J., 2014. Materials, Production, Properties and Application of Aerated Lightweight Concrete: Review. International Journal of Materials Science and Engineering, 2, 152–157.
Huang, Y., Ho, S. S. H., Lu, Y., Niu, R., Xu, L., Cao, J., Lee, S., 2016. Removal of Indoor Volatile Organic Compounds via Photocatalytic Oxidation: A Short Review and Prospect. Molecules, 21, 56, 1-20.
Ifang, S., Gallus, M., Liedtke, S., Kurtenbach, R., Wiesen, P., Kleffmann, J., 2014. Standardization methods for testing photo-catalytic air remediation materials: Problems and solution. Atmospheric Environment 91, 154–161.
Jang, H. S., Lim, Y. T., Kang, J. H., So, S. Y., So, H. S., 2018. Influence of calcination and cooling conditions on pozzolanic reactivity of paper mill sludge. Construction and Building Materials, 166, 257–270.
Jeong, J., Sekiguchi, K., Sakamoto, K., 2004. Photochemical and photocatalytic degradation of gaseous toluene using short-wavelength UV irradiation with TiO2 catalyst: comparison of three UV sources. Chemosphere, 57, 663–671.
Ji, J., Xu, Y., Huang, H., He, M., Liu, S., Liu, G., Xie, R., Feng, Q., Shu, T., Zhan, Y., Fang, R., Ye, X., Leung, D. Y. C., 2017. Mesoporous TiO2 under VUV irradiation: Enhanced photocatalytic oxidation for VOCs degradation at room temperature. Chemical Engineering Journal, 327, 490–499.
Jing, Z., Matsuoka, N., Jin, F., Hashida, T., Yamasaki, N., 2007. Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Management, 27, 287–293.
Khodadadian, F., Boer, M. W., Poursaeidesfahani, A., Ommen, J. R., Stankiewicz, A. I., Lakerveld, R., 2018. Design, characterization and model validation of a LED-based photocatalytic reactor for gas phase applications. Chemical Engineering Journal, 333, 456–466.
Kinuthia, J., 2018. Wastepaper sludge ash. Waste and Supplementary Cementitious Materials in Concrete, 289–321.
Kizinievič, O., Kizinievič V., Malaiškienė, J., 2018. Analysis of the effect of paper sludge on the properties, microstructure and frost resistance of clay bricks. Construction and Building Materials, 169, 689–69
Korologos, C. A., Philippopoulos, C. J., Poulopoulos, S. G., 2011. The effect of water presence on the photocatalytic oxidation of benzene, toluene,
ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment, 45, 7089–7095.
Kunchariyakun, K., Asavapisit, S., Sombatsompop, K., 2015. Properties of autoclaved aerated concrete incorporating rice husk ash as partial replacement for fine aggregate. Cement and Concrete Composites, 55, 11–16.
Kunther, W., Ferreiro, S., Skibsted, J., 2017. Influence of the Ca/Si ratio on the compressive strength of cementitious calcium–silicate–hydrate binders. Journal of Materials Chemistry A, 5, 17401–17412.
Kwon, D. W., Seo, P. W., Kim, G. J., Hong, S. C., 2015. Characteristics of the HCHO oxidation reaction over Pt/TiO2 catalysts at room temperature: The effect of relative humidity on catalytic activity. Applied Catalysis B: Environmental, 163, 436-443.
Laufs, S., Burgeth, G., Duttlinger, W., Kurtenbach, R., Maban, M., Thomas, C., Wiesen, P., Kleffmann, J., 2010. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints. Atmospheric Environment, 44, 2341–2349.
Li, X. G., Liu, Z. L., Lv, Y., Cai, L. X., Jiang, D. B., Jiang, W. G., Jian, S., 2018. Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete. Construction and Building Materials, 178, 175–182.
Li, Z., Ohnuki, T., Ikeda, K., 2016. Development of paper sludge ash-based geopolymer and application to treatment of hazardous water contaminated with radioisotopes. Materials, 9, 633.
Linsebigler, A. L., Lu, G., Yates, J. T., Jr. 1995. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735–758.
Liu, Y., Leong, B. S., Hu, Z. T., Yang, E. H., 2017. Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent. Construction and Building Materials, 148, 140–147.
Ma, B. G., Cai, L. X., Li, X. J., Jian, S. W., 2016. Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products. Journal of Cleaner Production, 1–10.
Mamaghani, A. H., Haghighat, F., Lee, C. S., 2017. Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art. Applied Catalysis B: Environmental, 203, 247–269.
Mamaghani, A. H., Haghighat, F., Lee, C. S., 2018. Photocatalytic degradation of VOCs on various commercial titanium dioxides: Impact of operating parameters on removal efficiency and by-products generation. Building and Environment, 138, 275–282.
Mamat, N., Kusbiantoro, A., Rahman, N., 2018. Hydrochloric acid based pre-treatment on paper mill sludge ash as an alternative source material for geopolymer. Materials Today: Proceedings, 5, 21825–21831.
Maury-Ramirez, A., Muynck, W. D., Stevens, R., Demeestere, K., Belie, N. D., 2013. Titanium dioxide based strategies to prevent algal fouling on cementitious materials. Cement & Concrete Composites, 36, 93–100.
Maury-Ramirez, A., Nikkanen, J. P., Honkanen, M., Demeestere, K., Levänen, E., Belie, N. D., 2014. TiO2 coatings synthesized by liquid flame spray and low temperature sol–gel technologies on autoclaved aerated concrete for air-purifying purposes. Materials Characterization, 87, 74–85.
Nadesan, M. S., Dinakar, P., 2017. Mix design and properties of fly ash waste lightweight aggregates in structural lightweight concrete. Case Studies in Construction Materials, 7, 336–347.
Pachideh, G., Gholhaki, M., 2019. Effect of pozzolanic materials on mechanical properties and water absorption of autoclaved aerated concrete. Journal of Building Engineering, 26, 100856.
Segui, P., Aubert, J. E., Husson, B., Measson, M., 2012. Characterization of wastepaper sludge ash for its valorization as a component of hydraulic binders. Applied Clay Science, 57, 79–85.
Shah, K. W., Li, W., 2019. A Review on Catalytic Nanomaterials for Volatile Organic Compounds VOC Removal and Their Applications for Healthy Buildings. Nanomaterials, 9, 910, 1-23.
Shayegan, Z., Lee, C. S., Haghighat, F., 2018. TiO2 photocatalyst for removal of volatile organic compounds in gas phase –A review. Chemical Engineering Journal, 334, 2408–2439.
Sherin, K., Saurabh, J. K., 2018. Review of Autoclaved Aerated Concrete Advantages and Disadvantages. Advanced Structures, Materials And Methodology in Civil Engineering, 35–39.
Siauciunas, R., Baltakys, K., 2004. Formation of gyrolite during hydrothermal synthesis in the mixtures of CaO and amorphous SiO2 or quartz. Cement and Concrete Research, 34, 2029–2036.
Singh, S.K., Kulkarni, S., Kumar, V., Vashistha P., 2018. Sustainable utilization of deinking paper mill sludge for the manufacture of building bricks Journal of Cleaner Production, 204, 321–333.
Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J. M., 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental, 86, 159–165.
Song, Y., Guo, C., Qian, J., Ding, T., 2015a. Effect of the Ca-to-Si ratio on the properties of autoclaved aerated concrete containing coal fly ash from circulating fluidized bed combustion boiler. Construction and Building Materials, 83, 136–142.
Song, Y., Li, B., Yang, E. H., Liu, Y., Ding, T., 2015b. Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement & Concrete Composites, 56, 51–58.
Tasbihi, M., Calin, L., Šuligoj, A., Fanetti, M., Štangar, U. L., 2017. Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth. Journal of Photochemistry and Photobiology A: Chemistry, 336, 89–97.
Wan, H., Hu, Y., Liu, G., Qu, Y., 2018. Study on the structure and properties of autoclaved aerated concrete produced with the stone-sawing mud. Construction and Building Materials, 184, 20–26.
Wang, C. L., Ni, W., Zhang, S. Q., Wang, S., Gai, G. S., Wang, W. K., 2016. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Construction and Building Materials, 104, 109–115.
Weon, S., Choi, W., 2016. TiO2 Nanotubes with Open Channels as Deactivation-Resistant Photocatalyst for the Degradation of Volatile Organic Compounds. Environmental Science & Technology, 50, 2556–2563.
Wong, H. S., Barakat, R., Alhilali, A., Saleh, M., Cheeseman, C. R., 2015. Hydrophobic concrete using waste paper sludge ash. Cement and Concrete Research, 70, 9–20.
Wongkeo, W., Thongsanitgarn, P., Pimraksa, K., Chaipanich, A., 2012. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Materials and Design, 35, 434–439.
Wu, D., Long, M., Zhou, J., Cai, W., Zhu, X., Chen, C., Wu, Y., 2009. Synthesis and characterization of self-cleaning cotton fabrics modified by TiO2 through a facile approach. Surface & Coatings Technology, 203, 3728–3733.
Yang, L., Hakki, A., Zheng, L., Jones, M. R., Wang, F., Macphee, D. E., 2019. Photocatalytic concrete for NOx abatement: Supported TiO2 efficiencies and impacts. Cement and Concrete Research, 116, 57–64.
Yaras, A., 2020. Combined effects of paper mill sludge and carbonation sludge on characteristics of fired clay bricks. Construction and Building Materials, 249, 118722.
Zhang, T., Li, X., Rao, Y., Liu, Y., Zhao, Q., 2020. Removal of formaldehyde in urban office building by the integration of ventilation and photocatalyst-coated window. Sustainable Cities and Society, 55, 102050.
Zhao, Y., Zhang, Y., Chen, T., Chen, Y., Bao, S., 2012. Preparation of high strength autoclaved bricks from hematite tailings. Construction and Building Materials, 28, 450–455.
Zhong, L., Brancho, J. J., Batterman, S., Bartlett, B. M., Godwin, C., 2017. Experimental and modeling study of visible light responsivephotocatalytic oxidation (PCO) materials for toluene degradation. Applied Catalysis B: Environmental, 216, 122–132.
Zouzelka, R., Rathousky, J., 2017. Photocatalytic abatement of NOx pollutants in the air usingcommercial functional coating with porous morphology. Applied Catalysis B: Environmental, 217, 466–476.
行政院環境保護署,環境資源資料庫,重點事業廢棄物–一般污泥之處理方式,網址:https://data.epa.gov.tw/dataset/wr_p_182/resource/192b75 82-7fa7-4858-8c3f-c7e00319145e,網頁擷取日期:2021年4月。
行政院環境保護署環保新聞專區,環保署公告室內空氣品質建議值,行政院環境保護署空保處,2005,網址:https://enews.epa.gov.tw/Page/3B3C62C78849F32F/3ad967fa-7e85-437b-b385-4a1ed6e72ffe,網頁擷取日期:2021年4月。
吳浚瑋,江康鈺,淨水污泥與漿紙污泥煅燒灰共同製備輕質化材料之抗菌特性評估研究,中華民國環境工程學會2019年廢棄物處理技術研討會,台中,2019。
吳冠興,垃圾焚化飛灰與淨水污泥應用高壓蒸氣技術製備為輕質化材料之可行性評估研究,碩士論文,逢甲大學環境工程與科學學系,台中,2015。
林凱隆,鄭敬融,太陽能板廢玻璃燒結作為地磚材料之研究,台灣環境資源永續發展協會2011年區域與環境資源永續發展研討會,台北,2011。
黃淑貞,江康鈺,都市垃圾焚化飛灰熔渣製成玻璃陶瓷之材料特性及其反應動力之研究, 中華民國環境工程學會2008年廢棄物處理技術研討會,台北,2008。
曾凱弘,紡織污泥應用於高壓冷結地磚之研究,碩士論文,國立中興大學土木工程學研究所,台中,2015。
顏慧茹,江康鈺,簡光勵,輕質化材料之製備與特性研究,中華民國環境工程學會2009年廢棄物處理技術研討會,雲林,2009。
劉美芬,回收無害化垃圾焚化飛灰製備一般瓷磚與輕質瓷磚之研究,碩士論文,國立聯合大學環境與安全衛生工程學系碩士班,苗栗,2013。
戴肇寬,林居慶,江康鈺,應用高壓蒸氣技術製備抗菌輕質化材料及其特性評估研究,中華民國環境工程學會2018年廢棄物處理技術研討會,台南,2018。 |