博碩士論文 107326028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:13.59.197.237
姓名 林祐均(Yu-Chun Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2019年鹿林山背景及生質燃燒煙團傳輸氣膠微量有機成分特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
每年春季中南半島旺盛的生質燃燒(biomass burning, BB)受到盛行西風傳輸到東亞,傳輸煙團沿途對於太陽輻射的直接和間接效應影響環境重大。本研究於2019年春季與秋季,在鹿林山大氣背景監測站(海拔2,862公尺)進行大氣氣膠採樣,以解析東亞受中南半島BB煙團傳輸影響和背景大氣氣膠水溶性有機碳(water-soluble organic carbon, WSOC)、二元酸及其鹽類、單醣脫水醣類、似腐植質物質(humic-like substance, HULIS)特性。
春季BB氣流軌跡類型有較高的PM2.5 WSOC/OC,代表BB煙團有機氣膠較易溶於水形成雲滴,影響環境變遷。草酸及其鹽類(oxalate, C2)為二元酸及其鹽類的主要成分,BB煙團是C2的主要來源之一。左旋葡聚糖是單醣脫水醣類的主要成分,左旋葡聚糖和甘露聚醣比值顯示春季BB氣流軌跡類型氣膠較多來自硬木燃燒,春季PM10-2.5阿拉伯醣醇(arabitol)濃度在適合真菌孢子生成條件下高於其他天氣條件,甘露醇(mannitol)則未如預期有較高濃度。春季HULIS來自生質燃燒和二次形成,BB氣流軌跡類型HULIS占PM10 OC濃度的38.2%。
秋季PM2.5 WSOC是OC主要成分,受BB影響程度較低,以二次反應生成為主,PM10-2.5 WSOC濃度可能也受二次反應影響。PM2.5二元酸及其鹽類來自一次排放較多,相對地,PM10-2.5受到較明顯的光化學二次反應影響。PM2.5 mannitol平均濃度較左旋葡聚醣高,且在多數日期都有較高濃度,可能是受到真菌孢子等生物氣膠的影響。秋季HULIS氣膠來自二次形成,HULIS在PM¬10和OC的質量濃度占比都較春季低。
本研究觀測期間,鹿林山春季受中南半島生質燃燒煙團傳輸影響,氣膠各化學成分濃度普遍較秋季觀測期間高。秋季氣膠呈現背景大氣特性,氣膠生成受人為污染排放和二次光化學反應影響。

關鍵詞:高山測站、氣膠微量有機成分、生質燃燒氣膠。 
摘要(英) Abstract
The vigorous biomass burning (BB) of Indochina is transported to East Asia by the prevailing westly wind every spring. The transporting BB smoke along the way caused direct and indirect solar radiation effects on the environment significantly. This study collected atmospheric aerosol at the Mt. Lulin atmospheric background station (2,862 meters above sea level) in spring and autumn 2019 to characterize water-soluble organic carbon (WSOC), diacids and their salts, monosaccharide anhydrosugars, humic-like substances (HULIS) of atmospheric aerosol under the influence of transported BB smoke from Indochina and background air in East Asia.
The BB airflow trajectory type in spring had a higher PM2.5 WSOC/OC, which implied that the organic aerosols from BB transported smoke were more water-soluble to form cloud droplets, and thus affecting environmental changes. Oxalic acid and its salts (oxalate, C2) are the main component of diacids and their salts. BB transported smoke was one of the C2 major sources. Levoglucosan is the main component of monosaccharide anhydrosugars. The ratio of levoglucosan to mannosan indicated that the aerosol from BB airflow type in spring was mostly contributed by hardwood burning. The spring PM10-2.5 arabitol concentration was found higher in suitable growth conditions for fungal spores than in other weather conditions. However, mannitol did not have a higher concentration as expected. Spring HULIS came from BB and secondary formation with the BB airflow trajectory type accounted for 38.2% of the PM10 OC concentration.
Autumn PM2.5 WSOC was the dominant fraction of OC, mainly from secondary formation and with lesser influence from BB. PM10-2.5 WSOC concentrations may also be contributed from secondary reactions. The PM2.5 diacids and their salts were more contributed by primary emissions. In contrast, PM10-2.5 was obviously influenced more by photochemical secondary reactions. The PM2.5 mannitol average was higher than that of levoglucosan and was higher on most sampling days, which may be affected by bioaerosols such as fungal spores. Autumn HULIS came from secondary formation, and the ratios of HULIS in PM10 and OC were lower than those in spring.
During the observation period of this study, the spring concentrations of various chemical components at Mt. Lulin were pervasively higher than that in autumn due to the influence of the BB smoke transported from Indochina. Autumn aerosols presented the characteristics of the background atmosphere, aerosol formation was affected by primary anthropogenic pollution emissions and secondary photochemical reactions.











Keywords: Moutain station, Aerosol trace organic components, Biomass burning aerosol
關鍵字(中) ★ 高山測站
★ 氣膠微量有機成分
★ 生質燃燒氣膠
關鍵字(英) ★ Moutain station
★ Aerosol trace organic components
★ Biomass burning aerosol
論文目次 目錄
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 生質燃燒 3
2.1.1 東南亞生質燃燒 4
2.1.2 氣膠的長程傳輸 5
2.2微量有機氣膠成分 6
2.2.1 水可溶有機碳 6
2.2.2二元酸及其鹽類 11
2.2.3單醣脫水醣類 15
2.2.4 似腐植質物質 22
第三章 研究方法 26
3.1 研究流程與步驟 26
3.2 採樣地點與採樣週期 27
3.3 採樣觀測儀器 32
3.3.1 R&P Model 3500 自組式蜂巢式套管採樣器 32
3.3.2 高量空氣採樣器 34
3.4 採樣濾紙選擇與前處理程序 36
3.4.1濾紙配置與採樣儀器 36
3.4.2 濾紙前處理 37
3.4.3 樣本運送與保存 38
3.5 樣本分析方法 39
3.5.1 樣本質量濃度秤重 39
3.5.2 氣膠水可溶有機碳分析 41
3.5.3 氣膠二元酸及其鹽類分析 43
3.5.4 氣膠單醣脫水化合物 45
3.5.5 氣膠似腐植質分析 48
3.6 非海洋來源氣膠水溶性離子 52
3.7 生質燃燒發生判別方法 53
3.7.1 美國太空總署(NASA)自然災害網 54
3.7.2 氣流軌跡模式(NOAA HYSPLIT) 55
第四章 結果與討論 56
4.1鹿林山氣流軌跡分類 56
4.2 氣膠水溶性有機碳特性 61
4.2.1 春季細粒徑氣膠水溶性有機碳特性 61
4.2.2 秋季細粒徑氣膠水溶性有機碳特性 67
4.2.3 春季粗粒徑氣膠水溶性有機碳特性 72
4.2.4 秋季粗粒徑氣膠水溶性有機碳 75
4.3 氣膠二元酸及其鹽類特性 78
4.3.1春季細粒徑氣膠二元酸及其鹽類 78
4.3.2秋季細粒徑氣膠二元酸及其鹽類 86
4.3.3春季粗粒徑氣膠二元酸及其鹽類 91
4.3.4秋季粗粒徑氣膠二元酸及其鹽類及其鹽類 93
4.3.5春季不同粒徑氣膠二元酸及其鹽類 95
4.3.6氣流軌跡緯度與光化反應關係 97
4.4 氣膠單醣脫水醣類特性 102
4.4.1春季細粒徑氣膠單醣脫水醣類 102
4.4.2秋季細粒徑氣膠單醣脫水醣類 104
4.4.3春季粗粒徑氣膠單醣脫水醣類 106
4.4.4秋季粗粒徑氣膠單醣脫水醣類 109
4.4.5春季左旋葡聚醣濃度占OC濃度比例 111
4.4.6春季觀測期間左旋葡聚醣/甘露聚醣 112
4.4.7春季觀測期間Mannitol和Arabitol與真菌孢子關係 114
4.5 氣膠似腐植質物質(HULIS)特性 119
4.5.1春季氣膠似腐植質物質(HULIS) 119
4.5.2秋季氣膠似腐植質(HULIS) 125
4.5.3 HULIS與光化學 127
4.5.4 HULIS-C/WSOC 131
4.5.5 OC/EC與HULIS-C以及WSOC_h 134
4.6 綜合彙整氣膠微量有機物觀測成果 135
4.6.1 春季細粒徑氣膠 135
4.6.2秋季細粒徑氣膠 137
4.6.3 春季粗粒徑氣膠 138
4.6.4 秋季粗粒徑氣膠 139
4.6.5 PM10 WSOC中本文各項分析成分占比 140
第五章 結論與建議 142
5.1結論 142
5.2 建議 144
第六章 參考文獻 145
附錄一 春季鹿林山採樣氣流軌跡圖 168
附錄二 秋季鹿林山採樣氣流軌跡圖 186
附錄三 春季鹿林山火點圖 193
附錄四 討論時剔除的數據 195
附錄五 MDL 198
附錄六 論文口試委員意見及回覆 199
參考文獻 第六章 參考文獻
Agarwal, S., Aggarwal, S., Okuzawa, K., Kawamura, K., 2010. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols. Atmospheric Chemistry and Physics 10, 5839-5858.
Aggarwal, S.G., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: Implications for photochemical aging during long‐range atmospheric transport. Journal of Geophysical Research: Atmospheres 113.
Aggarwal, S.G., Kawamura, K., 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment 43, 2532-2540.
Aiken, G.R., McKnight, D., Wershaw, R., MacCarthy, P., 1985. An introduction to humic substances in soil, sediment, and water.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966.
Baduel, C., Voisin, D., Jaffrezo, J.-L., 2010. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments. Atmospheric Chemistry and Physics 10, 4085-4095.
Bagtasa, G., Cayetano, M.G., Yuan, C.-S., Uchino, O., Sakai, T., Izumi, T., Morino, I., Nagai, T., Macatangay, R.C., Velazco, V.A., 2019. Long-range transport of aerosols from East and Southeast Asia to northern Philippines and its direct radiative forcing effect. Atmospheric Environment 218, 117007.
Bao, M., Zhang, Y.-L., Cao, F., Lin, Y.-C., Hong, Y., Fan, M., Zhang, Y., Yang, X., Xie, F., 2022. Light absorption and source apportionment of water soluble humic-like substances (HULIS) in PM2. 5 at Nanjing, China. Environmental Research 206, 112554.
Barbaro, E., Zangrando, R., Padoan, S., Karroca, O., Toscano, G., Cairns, W.R., Barbante, C., Gambaro, A., 2017. Aerosol and snow transfer processes: An investigation on the behavior of water-soluble organic compounds and ionic species. Chemosphere 183, 132-138.
Barregard, L., Sällsten, G., Gustafson, P., Andersson, L., Johansson, L., Basu, S., Stigendal, L., 2006. Experimental exposure to wood-smoke particles in healthy humans: effects on markers of inflammation, coagulation, and lipid peroxidation. Inhalation toxicology 18, 845-853.
Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., Puxbaum, H., 2008a. Arabitol and mannitol as tracers for the quantification of airborne fungal spores. Atmospheric Environment 42, 588-593.
Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I.L., Puxbaum, H., 2008b. Significant contributions of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmospheric Environment 42, 5542-5549.
Bhattarai, H., Saikawa, E., Wan, X., Zhu, H., Ram, K., Gao, S., Kang, S., Zhang, Q., Zhang, Y., Wu, G., 2019. Levoglucosan as a tracer of biomass burning: Recent progress and perspectives. Atmospheric Research 220, 20-33.
Bhowmik, H.S., Naresh, S., Bhattu, D., Rastogi, N., Prévôt, A.S., Tripathi, S.N., 2021. Temporal and spatial variability of carbonaceous species (EC; OC; WSOC and SOA) in PM2. 5 aerosol over five sites of Indo-Gangetic Plain. Atmospheric Pollution Research 12, 375-390.
Bikkina, S., Kawamura, K., Imanishi, K., Boreddy, S., Nojiri, Y., 2015. Seasonal and longitudinal distributions of atmospheric water‐soluble dicarboxylic acids, oxocarboxylic acids, and α‐dicarbonyls over the North Pacific. Journal of Geophysical Research: Atmospheres 120, 5191-5213.
Boreddy, S., Kawamura, K., Bikkina, S., Sarin, M., 2016. Hygroscopic growth of particles nebulized from water-soluble extracts of PM2. 5 aerosols over the Bay of Bengal: Influence of heterogeneity in air masses and formation pathways. Science of the Total Environment 544, 661-669.
Boreddy, S., Kawamura, K., Mkoma, S., Fu, P., 2014. Hygroscopic behavior of water‐soluble matter extracted from biomass burning aerosols collected at a rural site in Tanzania, East Africa. Journal of geophysical research: atmospheres 119, 12,233-212,245.
Boreddy, S.K., Hegde, P., Aswini, A., Summertime high abundances of succinic, citric, and glyoxylic acids in Antarctic aerosols: Implications to secondary organic aerosol formation. Journal of Geophysical Research: Atmospheres, e2021JD036172.
Bougiatioti, A., Zarmpas, P., Koulouri, E., Antoniou, M., Theodosi, C., Kouvarakis, G., Saarikoski, S., Mäkelä, T., Hillamo, R., Mihalopoulos, N., 2013. Organic, elemental and water-soluble organic carbon in size segregated aerosols, in the marine boundary layer of the Eastern Mediterranean. Atmospheric environment 64, 251-262.
Burge, H.A., 2002. An update on pollen and fungal spore aerobiology. Journal of Allergy and Clinical Immunology 110, 544-552.
Carlton, A.G., Turpin, B.J., Altieri, K.E., Seitzinger, S., Reff, A., Lim, H.-J., Ervens, B., 2007. Atmospheric oxalic acid and SOA production from glyoxal: Results of aqueous photooxidation experiments. Atmospheric Environment 41, 7588-7602.
Caseiro, A., Bauer, H., Schmidl, C., Pio, C.A., Puxbaum, H., 2009. Wood burning impact on PM10 in three Austrian regions. Atmospheric Environment 43, 2186-2195.
Chacon-Madrid, H., Donahue, N., 2011. Fragmentation vs. functionalization: chemical aging and organic aerosol formation. Atmospheric Chemistry and Physics 11, 10553-10563.
Chen, J., Li, C., Ristovski, Z., Milic, A., Gu, Y., Islam, M.S., Wang, S., Hao, J., Zhang, H., He, C., 2017. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Science of the Total Environment 579, 1000-1034.
Cheng, Y., Engling, G., He, K.-B., Duan, F.-K., Ma, Y.-L., Du, Z.-Y., Liu, J.-M., Zheng, M., Weber, R.J., 2013. Biomass burning contribution to Beijing aerosol. Atmospheric Chemistry and Physics 13, 7765-7781.
China, S., Wang, B., Weis, J., Rizzo, L., Brito, J., Cirino, G.G., Kovarik, L., Artaxo, P., Gilles, M.K., Laskin, A., 2016. Rupturing of biological spores as a source of secondary particles in Amazonia. Environmental science & technology 50, 12179-12186.
Codina, R., Fox, R., Lockey, R., DeMarco, P., Bagg, A., 2008. Typical levels of airborne fungal spores in houses without obvious moisture problems during a rainy season in Florida, USA. Journal of Investigational Allergology and Clinical Immunology 18, 156.
Cong, Z., Kang, S., Kawamura, K., Liu, B., Wan, X., Wang, Z., Gao, S., Fu, P., 2015a. Carbonaceous aerosols on the south edge of the Tibetan Plateau: concentrations, seasonality and sources. Atmospheric chemistry and physics 15, 1573-1584.
Cong, Z., Kawamura, K., Kang, S., Fu, P., 2015b. Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Scientific reports 5, 1-7.
Cubison, M., Ortega, A., Hayes, P., Farmer, D., Day, D., Lechner, M., Brune, W., Apel, E., Diskin, G., Fisher, J., 2011. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics 11, 12049-12064.
Cui, M., Chen, Y., Zheng, M., Li, J., Tang, J., Han, Y., Song, D., Yan, C., Zhang, F., Tian, C., 2018. Emissions and characteristics of particulate matter from rainforest burning in the Southeast Asia. Atmospheric Environment 191, 194-204.
de Oliveira Alves, N., Brito, J., Caumo, S., Arana, A., de Souza Hacon, S., Artaxo, P., Hillamo, R., Teinilä, K., de Medeiros, S.R.B., de Castro Vasconcellos, P., 2015. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment. Atmospheric Environment 120, 277-285.
Decesari, S., Fuzzi, S., Facchini, M., Mircea, M., Emblico, L., Cavalli, F., Maenhaut, W., Chi, X., Schkolnik, G., Falkovich, A., 2006. Characterization of the organic composition of aerosols from Rondônia, Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric Chemistry and Physics 6, 375-402.
Deshmukh, D.K., Kawamura, K., Deb, M.K., Boreddy, S.K., 2017. Sources and formation processes of water‐soluble dicarboxylic acids, ω‐oxocarboxylic acids, α‐dicarbonyls, and major ions in summer aerosols from eastern central India. Journal of Geophysical Research: Atmospheres 122, 3630-3652.
Deshmukh, D.K., Kawamura, K., Gupta, T., Haque, M.M., Zhang, Y.-L., Sing, D.K., Tsai, Y.I., 2019. High loadings of water-soluble oxalic acid and related compounds in PM2. 5 aerosols in eastern central India: Influence of biomass burning and photochemical processing. Aerosol and Air Quality Research 19, 2625-2644.
Deshmukh, D.K., Kawamura, K., Lazaar, M., Kunwar, B., Boreddy, S.K., 2016. Dicarboxylic acids, oxoacids, benzoic acid, α-dicarbonyls, WSOC, OC, and ions in spring aerosols from Okinawa Island in the western North Pacific Rim: size distributions and formation processes. Atmospheric Chemistry and Physics 16, 5263-5282.
Dhammapala, R., Claiborn, C., Jimenez, J., Corkill, J., Gullett, B., Simpson, C., Paulsen, M., 2007. Emission factors of PAHs, methoxyphenols, levoglucosan, elemental carbon and organic carbon from simulated wheat and Kentucky bluegrass stubble burns. Atmospheric Environment 41, 2660-2669.
Di Filippo, P., Pomata, D., Riccardi, C., Buiarelli, F., Perrino, C., 2013. Fungal contribution to size-segregated aerosol measured through biomarkers. Atmospheric Environment 64, 132-140.
Diapouli, E., Popovicheva, O., Kistler, M., Vratolis, S., Persiantseva, N., Timofeev, M., Kasper-Giebl, A., Eleftheriadis, K., 2014. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010. Atmospheric environment 96, 393-404.
Ding, N., Chen, S.-J., Wang, T., Wang, T., Mai, B.-X., 2018. Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) in fine particulate matter (PM2. 5) in three regions of South China. Environmental Pollution 238, 823-832.
Ding, X., Qi, J., Meng, X., 2019. Characteristics and sources of organic carbon in coastal and marine atmospheric particulates over East China. Atmospheric Research 228, 281-291.
Dong, X., Fu, J.S., 2015. Understanding interannual variations of biomass burning from Peninsular Southeast Asia, part II: Variability and different influences in lower and higher atmosphere levels. Atmospheric Environment 115, 9-18.
Dreessen, J., Sullivan, J., Delgado, R., 2016. Observations and impacts of transported Canadian wildfire smoke on ozone and aerosol air quality in the Maryland region on June 9–12, 2015. Journal of the Air & Waste Management Association 66, 842-862.
Duc, H.N., Bang, H.Q., Quang, N.X., 2016. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia. Environmental monitoring and assessment 188, 1-23.
Elbert, W., Taylor, P., Andreae, M., Pöschl, U., 2007. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmospheric Chemistry and Physics 7, 4569-4588.
Emygdio, A.P.M., de Fátima Andrade, M., Gonçalves, F.L.T., Engling, G., de Souza Zanetti, R.H., Kumar, P., 2018. Biomarkers as indicators of fungal biomass in the atmosphere of São Paulo, Brazil. Science of the total environment 612, 809-821.
Engling, G., Carrico, C.M., Kreidenweis, S.M., Collett Jr, J.L., Day, D.E., Malm, W.C., Lincoln, E., Hao, W.M., Iinuma, Y., Herrmann, H., 2006. Determination of levoglucosan in biomass combustion aerosol by high-performance anion-exchange chromatography with pulsed amperometric detection. Atmospheric Environment 40, 299-311.
Engling, G., Lee, J.J., Tsai, Y.-W., Lung, S.-C.C., Chou, C.C.-K., Chan, C.-Y., 2009. Size-resolved anhydrosugar composition in smoke aerosol from controlled field burning of rice straw. Aerosol Science and Technology 43, 662-672.
Fairs, A., Wardlaw, A., Thompson, J., Pashley, C.H., 2010. Guidelines on ambient intramural airborne fungal spores.
Fan, X., Wei, S., Zhu, M., Song, J., Peng, P.a., 2016. Comprehensive characterization of humic-like substances in smoke PM 2.5 emitted from the combustion of biomass materials and fossil fuels. Atmospheric Chemistry and Physics 16, 13321-13340.
Faust, B.C., Zepp, R.G., 1993. Photochemistry of aqueous iron (III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environmental Science & Technology 27, 2517-2522.
Fine, P.M., Cass, G.R., Simoneit, B.R., 2001. Chemical characterization of fine particle emissions from fireplace combustion of woods grown in the northeastern United States. Environmental Science & Technology 35, 2665-2675.
Fine, P.M., Cass, G.R., Simoneit, B.R., 2002. Chemical characterization of fine particle emissions from the fireplace combustion of woods grown in the southern United States. Environmental Science & Technology 36, 1442-1451.
Fine, P.M., Cass, G.R., Simoneit, B.R., 2004a. Chemical characterization of fine particle emissions from the fireplace combustion of wood types grown in the Midwestern and Western United States. Environmental Engineering Science 21, 387-409.
Fine, P.M., Cass, G.R., Simoneit, B.R., 2004b. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environmental Engineering Science 21, 705-721.
Fraser, M.P., Lakshmanan, K., 2000. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environmental Science & Technology 34, 4560-4564.
Frka, S., Grgić, I., Turšič, J., Gini, M.I., Eleftheriadis, K., 2018. Seasonal variability of carbon in humic-like matter of ambient size-segregated water soluble organic aerosols from urban background environment. Atmospheric Environment 173, 239-247.
Fu, P., Kawamura, K., Chen, J., Miyazaki, Y., 2014. Secondary production of organic aerosols from biogenic VOCs over Mt. Fuji, Japan. Environmental science & technology 48, 8491-8497.
Fu, P., Kawamura, K., Miura, K., 2011. Molecular characterization of marine organic aerosols collected during a round‐the‐world cruise. Journal of Geophysical Research: Atmospheres 116.
Fu, P., Kawamura, K., Usukura, K., Miura, K., 2013. Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Marine Chemistry 148, 22-32.
Fujii, Y., Tohno, S., Ikeda, K., Mahmud, M., Takenaka, N., 2021. A preliminary study on humic-like substances in particulate matter in Malaysia influenced by Indonesian peatland fires. Science of The Total Environment 753, 142009.
George, C., Ammann, M., D’Anna, B., Donaldson, D., Nizkorodov, S.A., 2015. Heterogeneous photochemistry in the atmosphere. Chemical reviews 115, 4218-4258.
Gonçalves, C., Alves, C., Evtyugina, M., Mirante, F., Pio, C., Caseiro, A., Schmidl, C., Bauer, H., Carvalho, F., 2010. Characterisation of PM10 emissions from woodstove combustion of common woods grown in Portugal. Atmospheric Environment 44, 4474-4480.
Gonçalves, C., Alves, C., Pio, C., Rzaca, M., Schmidl, C., Puxbaum, H., 2009. Chemical characterisation of PM10 emissions from combustion in a closed stove of common woods grown in Portugal, EGU General Assembly Conference Abstracts, p. 5764.
Gonçalves, C., Rienda, I.C., Pina, N., Gama, C., Nunes, T., Tchepel, O., Alves, C., 2021. PM10-bound sugars: chemical composition, sources and seasonal variations. Atmosphere 12, 194.
Gorbunov, B., Hamilton, R., Clegg, N., Toumi, R., 1998. Water nucleation on aerosol particles containing both organic and soluble inorganic substances. Atmospheric Research 47, 271-283.
Graber, E., Rudich, Y., 2006. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics 6, 729-753.
Gustafsson, O., Krusa, M., Zencak, Z., Sheesley, R.J., Granat, L., Engstrom, E., Praveen, P., Rao, P., Leck, C., Rodhe, H., 2009. Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323, 495-498.
Han, H., Kim, G., 2017. Significant seasonal change in optical properties by atmospheric humic-like substances (HULIS) in water-soluble organic carbon aerosols. Atmospheric Chemistry and Physics Discussions, 1-19.
Hays, M.D., Fine, P.M., Geron, C.D., Kleeman, M.J., Gullett, B.K., 2005. Open burning of agricultural biomass: physical and chemical properties of particle-phase emissions. Atmospheric environment 39, 6747-6764.
Hegde, P., Kawamura, K., Joshi, H., Naja, M., 2016. Organic and inorganic components of aerosols over the central Himalayas: winter and summer variations in stable carbon and nitrogen isotopic composition. Environmental Science and Pollution Research 23, 6102-6118.
Hennigan, C., Miracolo, M., Engelhart, G., May, A., Presto, A., Lee, T., Sullivan, A., McMeeking, G., Coe, H., Wold, C., 2011. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmospheric Chemistry and Physics 11, 7669-7686.
Hennigan, C.J., Sullivan, A.P., Collett Jr, J.L., Robinson, A.L., 2010. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters 37.
Ho, K., Cao, J., Lee, S., Kawamura, K., Zhang, R., Chow, J.C., Watson, J.G., 2007. Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls in the urban atmosphere of China. Journal of Geophysical Research: Atmospheres 112.
Ho, K., Huang, R.-J., Kawamura, K., Tachibana, E., Lee, S., Ho, S., Zhu, T., Tian, L., 2015. Dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, fatty acids and benzoic acid in PM 2.5 aerosol collected during CAREBeijing-2007: an effect of traffic restriction on air quality. Atmospheric Chemistry and Physics 15, 3111-3123.
Ho, K.F., Engling, G., Sai Hang Ho, S., Huang, R., Lai, S., Cao, J., Lee, S.C., 2014. Seasonal variations of anhydrosugars in PM2. 5 in the Pearl River Delta Region, China. Tellus B: Chemical and Physical Meteorology 66, 22577.
Hoffmann, D., Tilgner, A., Iinuma, Y., Herrmann, H., 2010. Atmospheric stability of levoglucosan: a detailed laboratory and modeling study. Environmental science & technology 44, 694-699.
Hoque, M., Kawamura, K., Seki, O., Hoshi, N., 2015. Spatial distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid and α-dicarbonyls in the remote marine aerosols over the North Pacific. Marine Chemistry 172, 1-11.
Hosoya, T., Sakaki, S., 2013. Levoglucosan formation from crystalline cellulose: importance of a hydrogen bonding network in the reaction. ChemSusChem 6, 2356-2368.
Hu, Q.-H., Xie, Z.-Q., Wang, X.-M., Kang, H., Zhang, P., 2013. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic. Scientific reports 3, 1-7.
Huang, W.R., Wang, S.H., Yen, M.C., Lin, N.H., Promchote, P., 2016. Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts. Journal of Geophysical Research: Atmospheres 121, 10,016-010,028.
Huo, Y., Li, M., Jiang, M., Qi, W., 2018. Light absorption properties of HULIS in primary particulate matter produced by crop straw combustion under different moisture contents and stacking modes. Atmospheric Environment 191, 490-499.
Huo, Y., Wang, Y., Qi, W., Jiang, M., Li, M., 2021. Comprehensive characterizations of HULIS in fresh and secondary emissions of crop straw burning. Atmospheric Environment 248, 118220.
Iuga, C., Galano, A., Alvarez-Idaboy, R., Sainz-Dìaz, I., Uc, V.H., Vivier-Bunge, A., 2012. Reactivity Trends in Radical-Molecule Tropospheric Reactions-A Quantum Chemistry and Computational Kinetics Approach, Atmospheric Model Applications. IntechOpen.
Jacob, D.J., Crawford, J.H., Kleb, M.M., Connors, V.S., Bendura, R.J., Raper, J.L., Sachse, G.W., Gille, J.C., Emmons, L., Heald, C.L., 2003. Transport and Chemical Evolution over the Pacific (TRACE‐P) aircraft mission: Design, execution, and first results. Journal of Geophysical Research: Atmospheres 108.
Jaenicke, R., 2005. Abundance of cellular material and proteins in the atmosphere. Science 308, 73-73.
Jaffrezo, J.-L., Aymoz, G., Delaval, C., Cozic, J., 2005. Seasonal variations of the water soluble organic carbon mass fraction of aerosol in two valleys of the French Alps. Atmospheric Chemistry and Physics 5, 2809-2821.
Jin, Y., Yan, C., Sullivan, A.P., Liu, Y., Wang, X., Dong, H., Chen, S., Zeng, L., Collett Jr, J.L., Zheng, M., 2020. Significant contribution of primary sources to water-soluble organic carbon during spring in Beijing, China. Atmosphere 11, 395.
Jung, J., Hong, S.-B., Chen, M., Hur, J., Jiao, L., Lee, Y., Park, K., Hahm, D., Choi, J.-O., Yang, E.J., 2020. Characteristics of methanesulfonic acid, non-sea-salt sulfate and organic carbon aerosols over the Amundsen Sea, Antarctica. Atmospheric Chemistry and Physics 20, 5405-5424.
Kanakidou, M., Seinfeld, J., Pandis, S., Barnes, I., Dentener, F.J., Facchini, M.C., Dingenen, R.V., Ervens, B., Nenes, A., Nielsen, C., 2005. Organic aerosol and global climate modelling: a review. Atmospheric Chemistry and Physics 5, 1053-1123.
Katsumi, N., Miyake, S., Okochi, H., Minami, Y., Kobayashi, H., Kato, S., Wada, R., Takeuchi, M., Toda, K., Miura, K., 2019. Humic-like substances global levels and extraction methods in aerosols. Environmental Chemistry Letters 17, 1023-1029.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental science & technology 21, 105-110.
Kawamura, K., Kasukabe, H., Barrie, L.A., 1996. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: One year of observations. Atmospheric Environment 30, 1709-1722.
Kawamura, K., Kasukabe, H., Yasui, O., Barrie, L.A., 1995. Production of dicarboxylic acids in the arctic atmosphere at polar sunrise. Geophysical Research Letters 22, 1253-1256.
Kawamura, K., Ono, K., Tachibana, E., Charrìère, B., Sempere, R., 2012. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer. Biogeosciences 9, 4725-4737.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres 104, 3501-3509.
Kawamura, K., Usukura, K., 1993. Distributions of low molecular weight dicarboxylic acids in the North Pacific aerosol samples. Journal of Oceanography 49, 271-283.
Kawamura, K., Watanabe, T., 2004. Determination of stable carbon isotopic compositions of low molecular weight dicarboxylic acids and ketocarboxylic acids in atmospheric aerosol and snow samples. Analytical Chemistry 76, 5762-5768.
Kawamura, K., Yokoyama, K., Fujii, Y., Watanabe, O., 2001. A Greenland ice core record of low molecular weight dicarboxylic acids, ketocarboxylic acids, and α‐dicarbonyls: A trend from Little Ice Age to the present (1540 to 1989 AD). Journal of Geophysical Research: Atmospheres 106, 1331-1345.
Kawichai, S., Prapamontol, T., Cao, F., Liu, X., Song, W., Kiatwattanacharoen, S., Zhang, Y., 2021. Significant contribution of C3-type forest plants’ burning to airborne PM2. 5 pollutions in Chiang Mai Province, Northern Thailand. CMU J. Nat. Sci 20, e2021088.
Keene, W.C., Pszenny, A.A., Galloway, J.N., Hawley, M.E., 1986. Sea‐salt corrections and interpretation of constituent ratios in marine precipitation. Journal of Geophysical Research: Atmospheres 91, 6647-6658.
Kerminen, V.-M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Meriläinen, J., 2000. Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. Journal of Aerosol Science 31, 349-362.
Khwaja, H.A., 1995. Atmospheric concentrations of carboxylic acids and related compounds at a semiurban site. Atmospheric Environment 29, 127-139.
Kim, Y., Seo, J., Kim, J.Y., Lee, J.Y., Kim, H., Kim, B.M., 2018. Characterization of PM 2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environmental Science and Pollution Research 25, 4330-4343.
Kiss, G., Tombácz, E., Varga, B., Alsberg, T., Persson, L., 2003. Estimation of the average molecular weight of humic-like substances isolated from fine atmospheric aerosol. Atmospheric Environment 37, 3783-3794.
Kiss, G., Varga, B., Galambos, I., Ganszky, I., 2002. Characterization of water‐soluble organic matter isolated from atmospheric fine aerosol. Journal of Geophysical Research: Atmospheres 107, ICC 1-1-ICC 1-8.
Krivácsy, Z., Gelencsér, A., Kiss, G., Mészáros, E., Molnár, Á., Hoffer, A., Mészáros, T., Sárvári, Z., Temesi, D., Varga, B., 2001. Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at the Jungfraujoch. Journal of atmospheric chemistry 39, 235-259.
Křůmal, K., Mikuška, P., Vojtěšek, M., Večeřa, Z., 2010. Seasonal variations of monosaccharide anhydrides in PM1 and PM2. 5 aerosol in urban areas. Atmospheric Environment 44, 5148-5155.
Kuang, B.Y., Lin, P., Huang, X., Yu, J.Z., 2015. Sources of humic-like substances in the Pearl River Delta, China: positive matrix factorization analysis of PM 2.5 major components and source markers. Atmospheric Chemistry and Physics 15, 1995-2008.
Kumar, A., Ram, K., Ojha, N., 2016. Variations in carbonaceous species at a high-altitude site in western India: Role of synoptic scale transport. Atmospheric Environment 125, 371-382.
Kundu, S., Kawamura, K., Andreae, T.W., Hoffer, A., Andreae, M.O., 2010a. Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil. Journal of Aerosol Science 41, 118-133.
Kundu, S., Kawamura, K., Kobayashi, M., Tachibana, E., Lee, M., Fu, P., Jung, J., 2016. A sub-decadal trend in diacids in atmospheric aerosols in eastern Asia. Atmospheric Chemistry and Physics 16, 585-596.
Kundu, S., Kawamura, K., Lee, M., 2010b. Seasonal variations of diacids, ketoacids, and α‐dicarbonyls in aerosols at Gosan, Jeju Island, South Korea: Implications for sources, formation, and degradation during long‐range transport. Journal of Geophysical Research: Atmospheres 115.
Kunwar, B., Kawamura, K., 2014a. One-year observations of carbonaceous and nitrogenous components and major ions in the aerosols from subtropical Okinawa Island, an outflow region of Asian dusts. Atmospheric Chemistry and Physics 14, 1819-1836.
Kunwar, B., Kawamura, K., 2014b. Seasonal distributions and sources of low molecular weight dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid, α-dicarbonyls and fatty acids in ambient aerosols from subtropical Okinawa in the western Pacific Rim. Environmental Chemistry 11, 673-689.
Kunwar, B., Kawamura, K., Fujiwara, S., Fu, P., Miyazaki, Y., Pokhrel, A., 2019. Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in atmospheric aerosols from Mt. Fuji, Japan: Implication for primary emission versus secondary formation. Atmospheric Research 221, 58-71.
Kunwar, B., Torii, K., Kawamura, K., 2017. Springtime influences of Asian outflow and photochemistry on the distributions of diacids, oxoacids and α-dicarbonyls in the aerosols from the western North Pacific Rim. Tellus B: Chemical and Physical Meteorology 69, 1369341.
Lai, C., Liu, Y., Ma, J., Ma, Q., He, H., 2014. Degradation kinetics of levoglucosan initiated by hydroxyl radical under different environmental conditions. Atmospheric Environment 91, 32-39.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, C.-T., Ram, S.S., Nguyen, D.L., Chou, C.C., Chang, S.-Y., Lin, N.-H., Chang, S.-C., Hsiao, T.-C., Sheu, G.-R., Ou-Yang, C.-F., 2016. Aerosol chemical profile of near-source biomass burning smoke in Sonla, Vietnam during 7-SEAS campaigns in 2012 and 2013. Aerosol and Air Quality Research 16, 2603-2617.
Lee, J.S., Kim, E.S., Kim, K.-A., Yu, J.Z., Kim, Y.P., Jung, C.H., Lee, J.Y., 2020. Temporal Variations and Characteristics of the Carbonaceous Species in PM 2.5 Measured at Anmyeon Island, a Background Site in Korea. Asian Journal of Atmospheric Environment (AJAE) 14.
Lee, Y., Lam, Y., Kuhlmann, G., Wenig, M.O., Chan, K.L., Hartl, A., Ning, Z., 2013. An integrated approach to identify the biomass burning sources contributing to black carbon episodes in Hong Kong. Atmospheric Environment 80, 478-487.
Legrand, M., Preunkert, S., Oliveira, T., Pio, C., Hammer, S., Gelencsér, A., Kasper‐Giebl, A., Laj, P., 2007. Origin of C2–C5 dicarboxylic acids in the European atmosphere inferred from year‐round aerosol study conducted at a west‐east transect. Journal of Geophysical Research: Atmospheres 112.
Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H., Chen, W.-N., 2014. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology 66, 23733.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Lin, P., Engling, G., Yu, J., 2010a. HULIS in emissions of fresh rice straw burning and in ambient aerosols in the pearl river delta region, China. Atmospheric Chemistry & Physics Discussions 10.
Lin, P., Huang, X.-F., He, L.-Y., Yu, J.Z., 2010b. Abundance and size distribution of HULIS in ambient aerosols at a rural site in South China. Journal of Aerosol Science 41, 74-87.
Lin, P., Yu, J.Z., Engling, G., Kalberer, M., 2012. Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: A study by ultra-high-resolution mass spectrometry. Environmental science & technology 46, 13118-13127.
Ma, Y., Cheng, Y., Gao, G., Yu, J.Z., Hu, D., 2020. Speciation of carboxylic components in humic-like substances (HULIS) and source apportionment of HULIS in ambient fine aerosols (PM2. 5) collected in Hong Kong. Environmental Science and Pollution Research 27, 23172-23180.
Markowicz, K., Chilinski, M., Lisok, J., Zawadzka, O., Stachlewska, I., Janicka, L., Rozwadowska, A., Makuch, P., Pakszys, P., Zielinski, T., 2016. Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013. Journal of Aerosol Science 101, 156-173.
Martins, L.D., Hallak, R., Alves, R.C., de Almeida, D.S., Squizzato, R., Moreira, C.A., Beal, A., da Silva, I., Rudke, A., Martins, J.A., 2018. Long-range transport of aerosols from biomass burning over southeastern South America and their implications on air quality. Aerosol and Air Quality Research 18, 1734-1745.
Marynowski, L., Łupikasza, E., Dąbrowska-Zapart, K., Małarzewski, Ł., Niedźwiedź, T., Simoneit, B.R., 2020. Seasonal and vertical variability of saccharides and other organic tracers of PM10 in relation to weather conditions in an urban environment of Upper Silesia, Poland. Atmospheric Environment 242, 117849.
Mazzoleni, L.R., Zielinska, B., Moosmüller, H., 2007. Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion. Environmental science & technology 41, 2115-2122.
McFiggans, G., Alfarra, M.R., Allan, J., Bower, K., Coe, H., Cubison, M., Topping, D., Williams, P., Decesari, S., Facchini, C., 2005. Simplification of the representation of the organic component of atmospheric particulates. Faraday Discussions 130, 341-362.
Miyazaki, Y., Kawamura, K., Jung, J., Furutani, H., Uematsu, M., 2011. Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific. Atmospheric Chemistry and Physics 11, 3037-3049.
Miyazaki, Y., Kawamura, K., Sawano, M., 2010. Size distributions and chemical characterization of water‐soluble organic aerosols over the western North Pacific in summer. Journal of Geophysical Research: Atmospheres 115.
Miyazaki, Y., Kondo, Y., Takegawa, N., Komazaki, Y., Fukuda, M., Kawamura, K., Mochida, M., Okuzawa, K., Weber, R., 2006. Time‐resolved measurements of water‐soluble organic carbon in Tokyo. Journal of Geophysical Research: Atmospheres 111.
Mkoma, S., Kawamura, K., Fu, P., 2013. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmospheric chemistry and physics 13, 10325-10338.
Mochida, M., Kawabata, A., Kawamura, K., Hatsushika, H., Yamazaki, K., 2003. Seasonal variation and origins of dicarboxylic acids in the marine atmosphere over the western North Pacific. Journal of Geophysical Research: Atmospheres 108.
Mochida, M., Kawamura, K., Fu, P., Takemura, T., 2010. Seasonal variation of levoglucosan in aerosols over the western North Pacific and its assessment as a biomass-burning tracer. Atmospheric Environment 44, 3511-3518.
Munchak, L.A., Schichtel, B.A., Sullivan, A.P., Holden, A.S., Kreidenweis, S.M., Malm, W.C., Collett Jr, J.L., 2011. Development of wildland fire particulate smoke marker to organic carbon emission ratios for the conterminous United States. Atmospheric environment 45, 395-403.
Naeher, L.P., Brauer, M., Lipsett, M., Zelikoff, J.T., Simpson, C.D., Koenig, J.Q., Smith, K.R., 2007. Woodsmoke health effects: a review. Inhalation toxicology 19, 67-106.
Nirmalkar, J., Deb, M., Tsai, Y., Deshmukh, D., 2015. Arabitol and mannitol as tracer for fungal contribution to size-differentiated particulate matter of rural atmospheric aerosols. International Journal of Environmental Science and Development 6, 460.
Oanh, N.T.K., Ly, B.T., Tipayarom, D., Manandhar, B.R., Prapat, P., Simpson, C.D., Liu, L.-J.S., 2011. Characterization of particulate matter emission from open burning of rice straw. Atmospheric Environment 45, 493-502.
Oppo, C., Bellandi, S., Degli Innocenti, N., Stortini, A., Loglio, G., Schiavuta, E., Cini, R., 1999. Surfactant components of marine organic matter as agents for biogeochemical fractionation and pollutant transport via marine aerosols. Marine Chemistry 63, 235-253.
Pani, S.K., Lee, C.-T., Griffith, S.M., Lin, N.-H., 2022. Humic-like substances (HULIS) in springtime aerosols at a high-altitude background station in the western North Pacific: Source attribution, abundance, and light-absorption. Science of The Total Environment 809, 151180.
Pani, S.K., Lin, N.-H., Chantara, S., Wang, S.-H., Khamkaew, C., Prapamontol, T., Janjai, S., 2018. Radiative response of biomass-burning aerosols over an urban atmosphere in northern peninsular Southeast Asia. Science of the Total Environment 633, 892-911.
Pani, S.K., Wang, S.-H., Lin, N.-H., Lee, C.-T., Tsay, S.-C., Holben, B.N., Janjai, S., Hsiao, T.-C., Chuang, M.-T., Chantara, S., 2016. Radiative effect of springtime biomass-burning aerosols over Northern Indochina during 7-SEAS/BASELInE 2013 campaign. Aerosol and Air Quality Research 16, 2802-2817.
Pantina, P., Tsay, S.-C., Hsiao, T.-C., Loftus, A.M., Kuo, F., Ou-Yang, C.-F., Sayer, A.M., Wang, S.-H., Lin, N.-H., Hsu, N.C., 2016. COMMIT in 7-SEAS/BASELInE: Operation of and observations from a novel, mobile laboratory for measuring in-situ properties of aerosols and gases. Aerosol and Air Quality Research 16, 2728-2741.
Park, J., Park, E.H., Schauer, J.J., Yi, S.-M., Heo, J., 2018. Reactive oxygen species (ROS) activity of ambient fine particles (PM2. 5) measured in Seoul, Korea. Environment international 117, 276-283.
Park, S., Son, S.-C., 2016. Size distribution and sources of humic-like substances in particulate matter at an urban site during winter. Environmental Science: Processes & Impacts 18, 32-41.
Park, S.S., Cho, S.Y., 2011. Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea. Atmospheric environment 45, 60-72.
Park, S.S., Kim, J.-H., Jeong, J.-U., 2012. Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an urban site in Korea in summer. Journal of Environmental Monitoring 14, 224-232.
Park, S.S., Yu, J., 2016. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmospheric Environment 136, 114-122.
Pavlovic, J., Hopke, P., 2012. Chemical nature and molecular weight distribution of the water-soluble fine and ultrafine PM fractions collected in a rural environment. Atmospheric environment 59, 264-271.
Pavuluri, C., Wang, S., Fu, P., Zhao, W., Xu, Z., Liu, C.Q., 2021. Molecular Distributions of Diacids, Oxoacids, and α‐Dicarbonyls in Summer‐and Winter‐Time Fine Aerosols From Tianjin, North China: Emissions From Combustion Sources and Aqueous Phase Secondary Formation. Journal of Geophysical Research: Atmospheres 126, e2020JD032961.
Pavuluri, C.M., Kawamura, K., 2012. Evidence for 13‐carbon enrichment in oxalic acid via iron catalyzed photolysis in aqueous phase. Geophysical Research Letters 39.
Pavuluri, C.M., Kawamura, K., Fu, P., 2018. Seasonal distributions and stable carbon isotope ratios of water-soluble diacids, oxoacids, and α-dicarbonyls in aerosols from Sapporo: Influence of biogenic volatile organic compounds and photochemical aging. ACS Earth and Space Chemistry 2, 1220-1230.
Pavuluri, C.M., Kawamura, K., Swaminathan, T., 2010. Water‐soluble organic carbon, dicarboxylic acids, ketoacids, and α‐dicarbonyls in the tropical Indian aerosols. Journal of Geophysical Research: Atmospheres 115.
Puxbaum, H., Caseiro, A., Sánchez‐Ochoa, A., Kasper‐Giebl, A., Claeys, M., Gelencsér, A., Legrand, M., Preunkert, S., Pio, C., 2007. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. Journal of Geophysical Research: Atmospheres 112.
Rai, A., Mukherjee, S., Chatterjee, A., Choudhary, N., Kotnala, G., Mandal, T., Sharma, S., 2020a. Seasonal variation of OC, EC, and WSOC of PM10 and their Cwt analysis over the eastern Himalaya. Aerosol Science and Engineering 4, 26-40.
Rai, A., Mukherjee, S., Chatterjee, A., Choudhary, N., Kotnala, G., Mandal, T., Sharma, S., 2020b. Seasonal variation of OC, EC, and WSOC of PM 10 and Their CWT analysis over the Eastern Himalaya. Aerosol Science and Engineering 4, 26-40.
Ram, K., Sarin, M., 2010. Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over Northern India. Journal of Aerosol Science 41, 88-98.
Ram, K., Sarin, M., Tripathi, S., 2012. Temporal trends in atmospheric PM2. 5, PM10, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain. Environmental science & technology 46, 686-695.
Rathnayake, C.M., Metwali, N., Jayarathne, T., Kettler, J., Huang, Y., Thorne, P.S., O′Shaughnessy, P.T., Stone, E.A., 2017. Influence of rain on the abundance of bioaerosols in fine and coarse particles. Atmospheric Chemistry and Physics 17, 2459-2475.
Reid, J., Koppmann, R., Eck, T., Eleuterio, D., 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799-825.
Reid, J.S., Hyer, E.J., Johnson, R.S., Holben, B.N., Yokelson, R.J., Zhang, J., Campbell, J.R., Christopher, S.A., Di Girolamo, L., Giglio, L., 2013. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research 122, 403-468.
Rengarajan, R., Sarin, M., Sudheer, A., 2007. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high‐altitude sites in North India. Journal of Geophysical Research: Atmospheres 112.
Salma, I., Mészáros, T., Maenhaut, W., Vass, E., Majer, Z., 2010. Chirality and the origin of atmospheric humic-like substances. Atmospheric Chemistry and Physics 10, 1315-1327.
Salma, I., Ocskay, R., Chi, X., Maenhaut, W., 2007. Sampling artefacts, concentration and chemical composition of fine water-soluble organic carbon and humic-like substances in a continental urban atmospheric environment. Atmospheric Environment 41, 4106-4118.
Samake, A., Jaffrezo, J.-L., Favez, O., Weber, S., Jacob, V., Albinet, A., Riffault, V., Perdrix, E., Waked, A., Golly, B., 2019. Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmospheric Chemistry and Physics 19, 3357-3374.
Sang, X., Zhang, Z., Chan, C., Engling, G., 2013a. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. Atmospheric Environment 78, 113-123.
Sang, X., Zhang, Z., Chan, C., Engling, G.J.A.E., 2013b. Source categories and contribution of biomass smoke to organic aerosol over the southeastern Tibetan Plateau. 78, 113-123.
Schkolnik, G., Rudich, Y., 2006. Detection and quantification of levoglucosan in atmospheric aerosols: A review. Analytical and Bioanalytical Chemistry 385, 26-33.
Schmidl, C., Bauer, H., Dattler, A., Hitzenberger, R., Weissenboeck, G., Marr, I.L., Puxbaum, H., 2008a. Chemical characterisation of particle emissions from burning leaves. Atmospheric Environment 42, 9070-9079.
Schmidl, C., Luisser, M., Padouvas, E., Lasselsberger, L., Rzaca, M., Ramirez-Santa Cruz, C., Handler, M., Peng, G., Bauer, H., Puxbaum, H., 2011. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmospheric Environment 45, 7443-7454.
Schmidl, C., Marr, I.L., Caseiro, A., Kotianová, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008b. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126-141.
Sempéré, R., Kawamura, K., 1996. Low molecular weight dicarboxylic acids and related polar compounds in the remote marine rain samples collected from western Pacific. Atmospheric Environment 30, 1609-1619.
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B.M., Ramirez-Santa Cruz, C., Bauer, H., Puxbaum, H., 2016. Chemical characterization and mass closure of PM10 and PM2. 5 at an urban site in Karachi–Pakistan. Atmospheric environment 128, 114-123.
Shakya, K.M., Ziemba, L.D., Griffin, R.J., 2010. Characteristics and sources of carbonaceous, ionic, and isotopic species of wintertime atmospheric aerosols in Kathmandu Valley, Nepal. Aerosol and Air Quality Research 10, 219-230.
Sharma, S., Choudhary, N., Kotnala, G., Das, D., Mukherjee, S., Ghosh, A., Vijayan, N., Rai, A., Chatterjee, A., Mandal, T., 2020a. Wintertime carbonaceous species and trace metals in PM10 in Darjeeling: a high altitude town in the eastern Himalayas. Urban Climate 34, 100668.
Sharma, S., Choudhary, N., Srivastava, P., Naja, M., Vijayan, N., Kotnala, G., Mandal, T., 2020b. Variation of carbonaceous species and trace elements in PM10 at a mountain site in the central Himalayan region of India. Journal of Atmospheric Chemistry 77, 49-62.
Sheesley, R.J., Schauer, J.J., Chowdhury, Z., Cass, G.R., Simoneit, B.R., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research: Atmospheres 108.
Simoneit, B.R., Schauer, J.J., Nolte, C., Oros, D.R., Elias, V.O., Fraser, M., Rogge, W., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 33, 173-182.
Singh, A., Rastogi, N., Patel, A., Satish, R., Singh, D., 2016. Size-segregated characteristics of carbonaceous aerosols over the Northwestern Indo-Gangetic Plain: Year round temporal behavior. Aerosol and Air Quality Research 16, 1615-1624.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Slade, J., Thalman, R., Wang, J., Knopf, D., 2015. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity. Atmospheric Chemistry and Physics 15, 10183-10201.
Song, J., He, L., Peng, P.a., Zhao, J., Ma, S., 2012. Chemical and isotopic composition of humic-like substances (HULIS) in ambient aerosols in Guangzhou, South China. Aerosol Science and Technology 46, 533-546.
Srinivasan, J., Gadgil, S., 2002. Asian Brown Cloud–fact and fantasy. Current Science 83, 586-592.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17.
Sullivan, A., Holden, A., Patterson, L., McMeeking, G., Kreidenweis, S., Malm, W., Hao, W., Wold, C., Collett Jr, J., 2008. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM2. 5 organic carbon. Journal of Geophysical Research: Atmospheres 113.
Suradi, H., Khan, M.F., Sairi, N.A., Rahim, H.A., Yusoff, S., Fujii, Y., Qin, K., Bari, M., Othman, M., Latif, M.T., 2021. Ambient Levels, Emission Sources and Health Effect of PM2. 5-Bound Carbonaceous Particles and Polycyclic Aromatic Hydrocarbons in the City of Kuala Lumpur, Malaysia. Atmosphere 12, 549.
Tan, J., Xiang, P., Zhou, X., Duan, J., Ma, Y., He, K., Cheng, Y., Yu, J., Querol, X., 2016. Chemical characterization of humic-like substances (HULIS) in PM2. 5 in Lanzhou, China. Science of the Total Environment 573, 1481-1490.
Tang, J., Li, J., Mo, Y., Khorram, M.S., Chen, Y., Tang, J., Zhang, Y., Song, J., Zhang, G., 2020. Light absorption and emissions inventory of humic-like substances from simulated rainforest biomass burning in Southeast Asia. Environmental Pollution 262, 114266.
Tao, J., Surapipith, V., Han, Z., Prapamontol, T., Kawichai, S., Zhang, L., Zhang, Z., Wu, Y., Li, J., Li, J., 2020. High mass absorption efficiency of carbonaceous aerosols during the biomass burning season in Chiang Mai of northern Thailand. Atmospheric Environment 240, 117821.
Theodosi, C., Panagiotopoulos, C., Nouara, A., Zarmpas, P., Nicolaou, P., Violaki, K., Kanakidou, M., Sempere, R., Mihalopoulos, N., 2018. Sugars in atmospheric aerosols over the Eastern Mediterranean. Progress in Oceanography 163, 70-81.
Tsai, Y.I., Sopajaree, K., Chotruksa, A., Wu, H.-C., Kuo, S.-C., 2013. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand. Atmospheric environment 78, 93-104.
Tsay, S.-C., Hsu, N.C., Lau, W.K.-M., Li, C., Gabriel, P.M., Ji, Q., Holben, B.N., Welton, E.J., Nguyen, A.X., Janjai, S., 2013. From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmospheric environment 78, 20-34.
Tsay, S.-C., Maring, H.B., Lin, N.-H., Buntoung, S., Chantara, S., Chuang, H.-C., Gabriel, P.M., Goodloe, C.S., Holben, B.N., Hsiao, T.-C., 2016. Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE. Aerosol and Air Quality Research 16, 2581-2602.
Vélëz, H., Glassbrook, N.J., Daub, M.E., 2007. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Fungal Genetics and Biology 44, 258-268.
Van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R., Jin, Y.v., van Leeuwen, T.T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric chemistry and physics 10, 11707-11735.
Verma, S.K., Kawamura, K., Chen, J., Fu, P., Zhu, C., 2015. Thirteen years of observations on biomass burning organic tracers over Chichijima Island in the western North Pacific: An outflow region of Asian aerosols. Journal of Geophysical Research: Atmospheres 120, 4155-4168.
Voisin, D., Jaffrezo, J.L., Houdier, S., Barret, M., Cozic, J., King, M.D., France, J.L., Reay, H.J., Grannas, A., Kos, G., 2012. Carbonaceous species and humic like substances (HULIS) in Arctic snowpack during OASIS field campaign in Barrow. Journal of Geophysical Research: Atmospheres 117.
Vongruang, P., Pimonsree, S., 2020. Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmospheric Environment 228, 117414.
Wan, E.C., Yu, J.Z., 2007. Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry. Environmental science & technology 41, 2459-2466.
Wan, X., Kang, S., Li, Q., Rupakheti, D., Zhang, Q., Guo, J., Chen, P., Tripathee, L., Rupakheti, M., Panday, A.K., 2017. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: influence of biomass burning. Atmospheric Chemistry and Physics 17, 8867-8885.
Wang, G., Xie, M., Hu, S., Gao, S., Tachibana, E., Kawamura, K., 2010. Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation. Atmospheric Chemistry and Physics 10, 6087-6096.
Wang, Q., Huang, R., Zhao, Z., Cao, J., Ni, H., Tie, X., Zhu, C., Shen, Z., Wang, M., Dai, W., 2017. Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China. Environmental Research Letters 12, 044012.
Warneck, P., 2003. In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere. Atmospheric environment (1994) 37, 2423-2427.
Win, M.S., Tian, Z., Zhao, H., Xiao, K., Peng, J., Shang, Y., Wu, M., Xiu, G., Lu, S., Yonemochi, S., 2018. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review. Journal of Environmental Sciences 71, 13-31.
Witkowska, A., Lewandowska, A.U., 2016. Water soluble organic carbon in aerosols (PM1, PM2. 5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station. Science of the Total Environment 573, 337-346.
Womiloju, T.O., Miller, J.D., Mayer, P.M., Brook, J.R., 2003. Methods to determine the biological composition of particulate matter collected from outdoor air. Atmospheric Environment 37, 4335-4344.
Wu, G., Wan, X., Gao, S., Fu, P., Yin, Y., Li, G., Zhang, G., Kang, S., Ram, K., Cong, Z., 2018. Humic-like substances (HULIS) in aerosols of central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, light absorption properties, and sources. Environmental science & technology 52, 7203-7211.
Xie, X., Chen, Y., Nie, D., Liu, Y., Liu, Y., Lei, R., Zhao, X., Li, H., Ge, X., 2020. Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere 251, 126350.
Xue, L., Ding, A., Cooper, O., Huang, X., Wang, W., Zhou, D., Wu, Z., McClure-Begley, A., Petropavlovskikh, I., Andreae, M.O., 2021. ENSO and Southeast Asian biomass burning modulate subtropical trans-Pacific ozone transport. National science review 8, nwaa132.
Yan, C., Zheng, M., Sullivan, A.P., Bosch, C., Desyaterik, Y., Andersson, A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., 2015. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmospheric Environment 121, 4-12.
Yang, C., Zhang, C., Luo, X., Liu, X., Cao, F., Zhang, Y.-l., 2020. Isomerization and degradation of levoglucosan via the Photo-Fenton Process: insights from aqueous-phase experiments and atmospheric particulate matter. Environmental Science & Technology 54, 11789-11797.
Ye, Z., Li, Q., Ma, S., Zhou, Q., Gu, Y., Su, Y., Chen, Y., Chen, H., Wang, J., Ge, X., 2017. Summertime day-night differences of PM2. 5 components (inorganic ions, OC, EC, WSOC, WSON, HULIS, and PAHs) in Changzhou, China. Atmosphere 8, 189.
Yin, S., Wang, X., Zhang, X., Guo, M., Miura, M., Xiao, Y., 2019. Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Environmental Pollution 254, 112949.
Zdráhal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environmental Science & Technology 36, 747-753.
Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X., 2008. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 42, 7013-7021.
Zhang, T., Engling, G., Chan, C.-Y., Zhang, Y.-N., Zhang, Z.-S., Lin, M., Sang, X.-F., Li, Y., Li, Y.-S., 2010. Contribution of fungal spores to particulate matter in a tropical rainforest. Environmental Research Letters 5, 024010.
Zhang, Y.-L., Kawamura, K., Fu, P.Q., Boreddy, S.K., Watanabe, T., Hatakeyama, S., Takami, A., Wang, W., 2016. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China. Atmospheric Chemistry and Physics 16, 6407-6419.
Zhang, Y.-N., Zhang, Z.-S., Chan, C.-Y., Engling, G., Sang, X.-F., Shi, S., Wang, X.-M., 2012. Levoglucosan and carbonaceous species in the background aerosol of coastal southeast China: case study on transport of biomass burning smoke from the Philippines. Environmental Science and Pollution Research 19, 244-255.
Zhang, Y.-x., Min, S., Zhang, Y.-h., Zeng, L.-m., He, L.-y., Bin, Z., Wei, Y.-j., Zhu, X.-l., 2007. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences 19, 167-175.
Zhang, Z., Engling, G., Zhang, L., Kawamura, K., Yang, Y., Tao, J., Zhang, R., Chan, C.-y., Li, Y., 2015. Significant influence of fungi on coarse carbonaceous and potassium aerosols in a tropical rainforest. Environmental Research Letters 10, 034015.
Zhao, W., Kawamura, K., Fu, P., 2016. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in PM 2.5 from Beijing, China, AGU Fall Meeting Abstracts, pp. A53E-0338.
Zhao, Z., Cao, J., Shen, Z., Huang, R.-J., Hu, T., Wang, P., Zhang, T., Liu, S., 2015. Chemical composition of PM2. 5 at a high–altitude regional background site over Northeast of Tibet Plateau. Atmospheric Pollution Research 6, 815-823.
Zheng, G., He, K., Duan, F., Cheng, Y., Ma, Y., 2013. Measurement of humic-like substances in aerosols: A review. Environmental Pollution 181, 301-314.
Zhou, X., Zhang, L., Tan, J., Zhang, K., Mao, J., Duan, J., Hu, J., 2018. Characterization of humic-like substances in PM2. 5 during biomass burning episodes on Weizhou Island, China. Atmospheric Environment 191, 258-266.
Zhu, C.-S., Cao, J.-J., Huang, R.-J., Shen, Z.-X., Wang, Q.-Y., Zhang, N.-N., 2018. Light absorption properties of brown carbon over the southeastern Tibetan Plateau. Science of the Total Environment 625, 246-251.
Zhu, C.-S., Zhang, Z.-S., Tao, J., Qu, Y., Cao, J.-J., 2020. Indication of primary biogenic contribution to BrC over a high altitude location in the southeastern Tibet. Atmospheric Environment 231, 117462.
Zhu, C., Kawamura, K., Fukuda, Y., Mochida, M., Iwamoto, Y., 2016. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest. Atmospheric Chemistry and Physics 16, 7497-7506.
Zhu, C., Kawamura, K., Kunwar, B., 2015. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmospheric Chemistry and Physics 15, 1959-1973.
余政哲, 2010. 鹿林山大氣氣膠含水量探討及乾氣膠光學特性. 國立中央大學環境工程研究所碩士論文.
侯雅馨, 2008. 大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究. 國立中央大學環境工程研究所碩士論文.
林寬昱, 2020. 2019年鹿林山背景生質燃燒傳輸氣膠特性及其對大氣光學影響. 國立中央大學環境工程研究所碩士論文.
洪國鈞, 2014. 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析. 國立中央大學環境工程研究所碩士論文.
許博鈞,2021. 2019 及 2020 年高山與都市環境氣膠化學及光學特性. 國立中央大學環境工程研究所碩士論文.
指導教授 李崇德 審核日期 2022-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明