博碩士論文 107327023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:238 、訪客IP:13.59.148.240
姓名 江茂誠(Mao-Cheng Jiang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 數位影像相關法應用於殘留應力量測
(Digital image correlation method applied to residual stress measurement)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 全場相位式表面電漿共振生醫感測器★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究
★ 複合式長行程精密定位平台之研究★ 紅外波段分光之全像集光器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究開發了一套非接觸式的殘留應力量測系統,利用熱處理會釋放殘留應力的特性,配合數位影像相關法(Digital Image Correlation, DIC)能量測表面位移的功能,計算出表面因殘留應力釋放造成的應變。配合彈性力學的數學模型分析,達成表面殘留應力的量測。本研究同時評估了待測物熱處理後的晶體結構改變、厚度變化與熱翹曲對量測值的影響,並進行量測補償,有效提升量測之精準度。
為了驗證實驗的正確性,本研究採用光彈法與X-Ray殘留應力量測儀來進行驗證,實驗之量測結果與驗證工具之量測結果皆相互吻合。在確認了系統的正確性之後,本研究使用量測不確定度原理來評估量測精度,其精度約為(E/(1-v))‧10-4。相較一般傳統的殘留應力檢測技術僅能進行單點量測,本研究能達成二維平面的殘留應力檢測。使人們可以更快速地找出殘留應力所集中的位置,對工業的製造與設計擁有極大的幫助。除此之外,此技術還具備低成本、架設簡單與非接觸式量測之優勢,應用於量測設備的量產或商用機台之整合都有十分良好的前景。
摘要(英) In this study, a non-contact residual stress measurement system was developed. Utilizing the characteristics of heat treatment to release residual stress, combined with the function of digital image correlation that can measure surface displacement, the strain of the surface due to the release of residual stress is calculated. Cooperate with the mathematical model analysis of elasticity to achieve the measurement of residual stress on the surface. This study also evaluated the effects of metallographic changes, thickness changes and thermal warpage on the measured value after the heat treatment of the test object, and performed measurement compensation to effectively improve the accuracy of the measurement.
In order to verify the correctness of the experiment, this experiment uses the photoelastic method and X-Ray residual stress measuring instrument to verify the residual stress measurement results, and the estimated measurement resolution is about (E/(1-v))‧10-4. Compared with the traditional residual stress detection technology, only single point measurement can be carried out. This study can achieve two-dimensional large-area residual stress detection, which can more quickly find the location of residual stress concentration. It has the advantages of industrial manufacturing and design. In addition, this technology has the advantages of low cost, easy installation and non-contact measurement. It is very promising for mass production of measurement equipment or integration of commercial machines.
關鍵字(中) ★ 殘留應力量測
★ 數位影像相關法
關鍵字(英) ★ Digital Image Correlation
★ Residual stress
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 數位影像關係法 2
1-2-2 影像校正技術 5
1-2-3殘留應力量測 6
1-2-4 光彈法 8
1-2-5 積層製造之材料分析 10
1-3 研究動機與目的 11
1-4 論文架構 13
第二章 實驗原理 14
2-1 數位影像相關法應用於殘留應力量測 14
2-1-1 數位影像相關法量測 14
2-1-2 廣義虎克定律 20
2-2影像的校正與補償 21
2-2-1相機位置移動 22
2-2-2試片熱處理後厚度變化與量測面傾斜 22
2-2-3晶體結構改變對DIC量測的影響 24
2-2-4校正與補償流程 25
2-3 光彈法 26
2-3-1 光彈法量測殘留應力 26
2-3-2 光彈法解相 28
2-4 小結 31
第三章 系統架構 32
3-1 數位影像相關法 32
3-1-1實驗設備 32
3-1-2實驗流程 34
3-2 光彈驗證 40
3-2-1實驗設備 40
3-2-2 實驗流程 41
3-3 小結 44
第四章 實驗結果與討論 45
4-1 量測樣本與規格 45
4-2量測殘留應力校正 46
4-2-1 厚度變化造成的誤差 46
4-2-2 量測面傾斜造成的誤差 49
4-2-3 晶體結構改變造成的誤差 49
4-2-4 小結 50
4-3 量測結果 51
4-4 光彈法驗證 54
4-4-1 光彈法與數位影像相關法之應力量測 55
4-4-2光彈法與數位影像相關法之殘留應力量測 58
4-5 系統性能分析 61
4-5-1 量測精度 61
4-5-2 系統量測範圍 64
4-6 小結 65
第五章 誤差分析 66
5-1 系統誤差 66
5-2 隨機誤差 67
5-2-1 元件之熱膨脹 67
5-2-2 長時間的環境擾動 68
5-2-3 電子雜訊 69
5-3 小結 69
第六章 結論與未來展望 70
6-1 結論 70
6-2 未來展望 70
參考文獻 71
附錄 透視變換對數位影像相關法之量測校正 74
參考文獻 [1] O. Sicot, X. L. Gong, A. Cherouat, and J. Lu, “Influence of Experimental Parameters on Determination of Residual Stress Using the Incremental Hole-Drilling Method,” Composites Science and Technology, 64, 171-180 (2004).
[2] H. Lu and P. D. Cary, “Deformation Measurements by Digital Image Correlation: Implementation of a Second-Order Displacement Gradient,” Experimental Mechanics, 40, 393-400 (2000).
[3] B. Pan, “Reliability-Guided Digital Image Correlation for Image Deformation Measurement,” Optical Society of America, 48, 1535-1542 (2009).
[4] B. Pan, H. Xie, and Z. Wang, “Equivalence of Digital Image Correlation Criteria for Pattern Matching,” Optical Society of America, 49(28), 5501-5509 (2010).
[5] A. D. Kammers and S. Daly, “Small-Scale Patterning Methods for Digital Image Correlation under Scanning Electron Microscopy,” Measurement Science and Technology, 22(12), 125501 (2011).
[6] S. Yoneyama and H. Ueda, “Bridge Deflection Measurement Using Digital Image Correlation with Camera Movement Correction,” Materials Transactions, 53(2), 285-290 (2012).
[7] L. A. Sanchez and L. E. Hornberger, “Monitoring of Residual Stresses in Injection-Molded Plastics with Holographic Interferometry,” Optics and Lasers in Engineering, 37(1), 27-37 (2002).
[8] J. Václavík1, O. Weinberg, P. Bohdan, and S. Holý, “Evaluation of Residual Stresses Using Ring Core Method,” International Conference on Experimental Mechanics, 44004 (2010).
[9] V. Martinez-Garcia and M. Wenzelburger, “Residual Stress Measurement with Laser-Optical and Mechanical Methods,” Advanced Materials Research, 996, 256-261 (2014).
[10] C. E. Knight, “Orthotropic Photoelastic Analysis of Residual Stresses in Filament-Wound Rings,” Experimental Mechanics, 12, 107-112 (1972).
[11] A. Ajovalasit, S. Barone, and G. Petrucci, “A Method for Reducing the Influence of Quarter-Waveplate Errors in Phase Stepping Photoelasticity,” The Journal of Strain Analysis for Engineering Design, 33(3), 207-216 (1998).
[12] P. Krakhmalev, I. Yadroitsava, G. Fredriksson, and I. Yadroitsev, “In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels,” Materials and Design, 87, 380–385 (2015).
[13] K. Saeidia, D. L. Zapataa, F. Lofajb, L. Kvetkovab, J. Olsenc, Z. Shenc, and F. Akhtara, “Ultra-High Strength Martensitic 420 Stainless Steel with High Ductility,” Additive Manufacturing, 29, 100803 (2019).
[14] J. Blaber, B. Adair, and A. Antoniou, “Ncorr: Open-Source 2D Digital Image Correlation
Matlab Software,” Experimental Mechanics, 55, 1105-1122 (2015).
[15] H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital Image Correlation using Newton-Raphson Method of Partial Differential Correction,” Experimental Mechanics, 29, 261-267 (1989).
[16] Q. Wang, R. Ward, and H. Shi, “Isophote Estimation by Cubic-Spline Interpolation,” IEEE International Conference Image Processing, 3, 401-404 (2002).
[17] T. J. Ypma, “Historical Development of the Newton-Raphson Method,” SIAM Review, 37, 531-551 (1995).
[18] S. Siuly and Y. Li, “Improving the Separability of Motor Imagery EEG Signals Using a Cross Correlation-Based Least Square Support Vector Machine for Brain–Computer Interface,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20, 526-538 (2012).
[19] G. S. Schajer, B. Winiarski, and P.J. Withers, “Hole-Drilling Residual Stress Measurement with Artifact Correction Using Full-Field DIC,” Experimental Mechanics, 53, 255-265 (2013).
[20] P. Lava, S. Coppieters, Y. Wang, P. V. Houtte, and D. Debruyne, “Error Estimation in Measuring Strain Fields with DIC on Planar Sheet Metal Specimens with a Non-Perpendicular Camera Alignment,” Optics and Lasers in Engineering, 49(1), 57-65 (2011).
[21] G. Melnikov, S. Emelyanov, N. Ignatenko, and O. Manzhos, “The Packing Coefficient of Particles in Structure Cluster Systems,” Key Engineering Materials, 781, 137-142 (2018).
[22] B. W. Smith, X. Li, and W. Tong, “Error Assessment for Strain Mapping by Digital Image Correlation,” Experimental Techniques, 22, 19-21 (1998).
[23] 佟景偉、李鴻琦,光力學原理及測試技術,科學出版社 (2009)。
[24] G. F. Bomarito, J. D. Hochhalter, T. J. Ruggles, and A. H. Cannon, “Increasing Accuracy and Precision of Digital Image Correlation Through Pattern Optimization,” Optics and Lasers in Engineering, 91, 73-85 (2017).
[25] C. W. Hull, “Selective Lase Sintering at Melting Temperature,” United States Patent Number 6215093 (2001).
[26] Gibson, D. Rosen, and B. Stucker, “Design for Additive Manufacturing,” Additive Manufacturing Technologies, 299-332 (2010).
[27] N. H. van Dijk, A. M. Butt, L. Zhao, J. Sietsma, S. E. Offerman, J .P. Wright, and S. van der Zwaag, “Thermal Stability of Retained Austenite in TRIP Steels Studied by Synchrotron X-Ray Diffraction During Cooling,” Acta Materialia, 53, 5439-5447 (2005).
[28] A. Shibata, H. Yonezawa, K. Yabuuchi, S. Morito, T. Furuhara, and T. Maki, “Relation between Martensite Morphology and Volume Change Accompanying Fcc to Bcc Martensitic Transformation in Fe–Ni–Co Alloys,” Materials Science and Engineering A, 438-440, 241-245 (2006).
[29] E. D. Salmon and P. Tran, “High-Resolution Video-Enhanced Differential Interference Contrast (VE-DIC) Light Microscopy,” Methods in Cell Biology, 56, 153-184 (1998).
[30] V. R. Meyer, “Measurement Uncertainty,” Journal of Chromatography A, 1158(1-2), 15-24 (2007).
指導教授 李朱育(Ju-Yi Lee) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明