博碩士論文 107329011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.216.8.36
姓名 馬浩元(Hao-Yuan Ma)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 結合旋轉塗佈摻雜之局部射極雷射摻雜技術並應用於製作N型單晶矽太陽能電池
(Laser doping combined with spin-on dopant technique for fabrication of n-type monocrystalline silicon solar cell)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 彈性基板嵌入金屬奈米粒子之光-物質耦合性質之探討★ 以反應式濺鍍前驅物應用於兩階段式成長二硫化鉬薄膜
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗將開發結合旋轉塗佈摻雜(spin-on dopant, SOD)技術之局部雷射摻雜(laser doping, LD)擴散製程。此製程技術可用於製作選擇性射極(selective emitter, SE)結構於矽晶太陽能電池;亦具潛力應用於其他半導體元件之局部高摻雜層製作。相較於傳統的氣體摻雜源,SOD 製程技術具有成本低、安全性高等優點;另一方面相較於以離子佈植與短波長雷射系統製作SE的方式,本研究重點為開發二氧化碳(CO2)雷射進行局部高摻雜結構製作,除了可有效減少設備成本並能降低製程中之表面缺陷產生。研究初期透過自行撰寫之模擬程式計算雷射製程參數對矽晶圓表面溫度變化之影響並藉此優化後續製程參數。透過SOD結合局部雷射摻雜製作之SE結構,淺摻雜與重摻雜區之片電阻可根據需求分別控制在100-150 Ω/sq 與50-80 Ω/sq。
在太陽能電池實作成果方面,本研究所開發之SOD擴散製程結合CO2雷射摻雜製作具SE結構之N型PERT(鈍化射極及背面全擴散)雙面太陽能電池,其相較於均勻性emitter結構之電池,光電轉換效率可提升0.26%,開路電壓提升4.31 mV,短路電流提升0.92 mA/cm2。
摘要(英) In this experiment, a local laser-doping technique based on a spin-on-dopant source and carbon dioxide (CO2) laser has been developed with the purpose of implementing selective emitter (SE) structures in bifacial n-type PERT (passivated emitter rear totally diffused) silicon solar cells. Compared with the conventional gas diffusion sources, our SOD process has the advantages of low cost and non-toxicity.
Regarding the SE processing, compared to ion implantation and short-wavelength laser systems, we used carbon dioxide (CO2) laser system to perform the fabrication of SE structures on Si wafers, which can effectively reduce both of the equipment costs and surface defects generated during the process. After optimization of the process parameters, the sheet resistance of the lightly-doped and heavily-doped zone could be controlled at 100-150 Ω/sq and 50-80 Ω/sq on demand, separately.
Finally, SE N-PERT (passivated emitter rear totally diffused) Si solar cells were fabricated using the CO2 laser doping combined with SOD diffusion process. Compare to the reference cell with a homogeneous emitter structure, the selective emitter solar cell improves the efficiency 0.26%, the open circuit voltage 4.31 mV, the short circuit current 0.92 mA/cm2.
關鍵字(中) ★ 局部雷射擴散摻雜製程
★ 旋轉塗佈摻雜源
★ 選擇性射極
★ N型PERT( 鈍化射極及背面全擴散)雙面太陽能電池
關鍵字(英) ★ Local laser-doping
★ Spin-on-dopant
★ Selective emitter
★ N-type PERT(passivated emitter rear totally diffused) silicon solar cells
論文目次 中文摘要 I
英文摘要 II
目錄 IV
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究背景 2
第二章 基礎理論及文獻回顧 5
2-1 概論 5
2-1-1矽晶太陽能電池概論 5
2-1-2 太陽光光譜 7
2-1-3 太陽能電池的重要參數 8
2-2 複合理論 13
2-3 雙面受光型太陽能電池(Bifacial Si solar cells) 18
2-4 選擇性射極結構(Selective emitter, SE) 19
2-4-1 網印/油墨磷膠之SE 結構製程 (Doped Si Ink) 21
2-4-2 離子佈植法之SE 結構製程技術 22
2-4-3 回蝕式之 SE 結構製程 22
2-4-4 雷射摻雜法應用於SE結構製程 23
2-4-4-1 雷射化學過程與自對準光誘導電鍍 (LCP and LIP) 24
2-4-4-2 添加雷射摻雜法 (Add-on laser doping) 24
2-5 二氧化碳雷射(CO2 laser) 25
第三章 研究方法 28
3-1 研究動機與實驗流程 28
3-2 雷射擴散之條件與矽基板表面形貌觀察 29
3-2-1 擴散源溶液製備 29
3-2-2 基板粗糙化 29
3-2-3 雷射擴散技術 31
3-2-4 製備SIMS試片 33
3-3 結合雙面PERT及SE結構之太陽能電池電性量測 34
第四章 結果與討論 38
4-1 CO2雷射對硼擴散後矽晶片之加熱模型 38
4-2 CO2 雷射擴散摻雜參數探討 42
4-2-1 雷射擴散前射極層擴散條件分析 42
4-2-2雷射掃描間距條件 44
4-2-3 CO2雷射摻雜擴散製程優化 46
4-2-4摻雜濃度與縱深分佈分析 53
4-3 選擇性結構太陽能電池之性能分析 54
第五章 結論 57
參考文獻 58
參考文獻 [1] Research Cell Efficiency Records. Available at: https//www.nrel.gov/pv/.
[2] J. Zhao, A. Wang and M.A. Green, Progress in Photovoltaics, 8, 549-558 (2000).
[3] J. Schmidt, K. Bothe, R. Bock, C. Schmiga, R. Krain, R. Brendel, 22nd European Photovoltaic Solar Energy Conference, 3-7 (2007).
[4] International Technology Roadmap for Photovoltaic Results 2018 – Presentation.
[5] A. Wang, J. Zhao, M.A. Green, Applied physics letters, 57, 605 (1990).
[6] H. Hoppe, N. S. Sariciftci, Journal of materials research, 19, 1924-1945 (2004).
[7] Schimpe, R., Aeu Archiv Fur Elektronik Und Ubertragungstechnik International Journal of Electronics and Communications, 46, 80-85 (1992).
[8] Sharma, S.K., et al., Journal of Physics D Applied Physics, 26(7), 1130-1133 (1993).
[9] H. Hoppe, N. S. Sariciftci, Journal of materials research, 19, 1924-1945 (2004).
[10] B. Fischer, PhD Thesis, University of Konstanz, 2003.
[11] R. Schimpe, International Journal of Electronics and Communications, 46, 80-85 (1992).
[12] S. Pizzini, Solar Energy Materials & Solar Cells, 94, 1528-1533 (2010).
[13] Daniel Macdonald, IEEE, 2, 0-7803-7471-1(2002).
[14] Muramatsu, S., et al., Solar Energy Materials and Solar Cells., 65, 599-606 (2001).
[15] Lee, Y., et al., Nanoscale Research Letters, 7, 1-6 (2012).
[16] Dauwe, S., et al., Progress in photovoltaics, 10, 271-278 (2002).
[17] Salemi, S., et al., Journal of Applied Physics (2013).
[18] Chang, L.S., P.L. Gendler, and J.H. Jou, Journal of Materials Science, 26, 1882-1890 (1999).
[19] Jang, J.H. and K.S. Lim, Japanese journal of applied physics part 1-regular papers short notes & review papers, 36, 6230-6236 (1997).
[20] Sepeai S. et al., International Journal of Photoenergy, 10, 1155-1162 (2012).
[21] J. Del Alamo, J. Van Meerbergen, F. d′Hoore, J Nijs, Solid-State Electronics, 24, 533-538 (1980).
[22] P. Michael, Godlewski, R. Cosmo Baraona, W. Henry, 10th Photovoltaic Specialists′ Conf., IEEE, 29, 131-150 (1990).
[23] Arnab Das, PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering, (2012)
[24] A. G. Aberle, University of New South Wales, Sydney NSW 2052 (1999).
[25] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers (2005).
[26] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. (2006).
[27] S.J. Choi, et al., Renewable Energy, 54, 96-100 (2013).
[28] A. B. Sproul, M. A. Green, and A. W. Stephens, J. Appl. Phys., 72, 4161-4171 (1992).
[29] M. S. Tyagi and R. V. Overstraeten, Solid-St. Electron., 26, 577-597 (1983).
[30] M. J. Kerr and A. Cuevas, J. Appl. Phys., 91, 97-104 (2002).
[31] W. Shockley and W. Read, Phys. Rev., 87, 835-842 (1952).
[32] I. Martín, M. Vetter, M. Garín, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla , Journal of Applied Physics, 98, 114912-114921 (2005).
[33] M. Kerr and A. Cuevas, Journal of Applied Physics, 91, 2473-2481 (2002).
[34] S. Dauwe, harderberg (2004).
[35] http://www.pv-tech.org/solar-media-store-shutdown
[36] Y. Gassenbauer, K. Ramspeck, B. Bethmann, K. Dressler, J.D. Moschner, M. Fiedler, E. Brouwer, R. Drssler, N. Lenck, F. Heyer, M. Feldhaus, A. Seidl, M. Muller, A. Metz, IEEE Journal of Photovoltaics, 99, 125 (2013).
[37] M. Zanuccoli, P. F. Bresciani, M. Frei, H.-W. Guo, H. Fang, M. Agrawal, C. Fiegna, E. Sangiorgi, ,35th IEEE Photovoltaic Specialists Conference, (2010)
[38] R. De Rose, M. Zanuccoli, P. Magnone, M. Frei, E. Sangiorgi, C. Fiegna, IEEE J. Photovolt, 3, 159–167 (2013)
[39] Heinrich, G. et al. Energy Procedia 8, 592 (2011).
[40] P. K. Basu, J. Cunnusamy, D. Sarangi, M. B. Boreland, Renewable Energy, 66, 69 (2014)
[41] M. Z. Rahman, Optics and Photonics Journal, 2, 129‐134 (2012).
[42] H. Antoniadis, F. Jiang, W. Shan and Y. Liu, Proceedings of the 35th IEEE Photovoltaic Solar Energy Conference and Exhibition, Honolulu, 20- 25 (2010).
[43] H. Antoniadis , F. Jiang, W. Shan, Y. L. in Proceedings of the 35th IEEE Photovoltaic Specialists Conference 1193 (2010).
[44]R. Low, A. Gupta, N. Bateman, D. Ramappa,P. Sullivan, W. Skinner, J. Mullin, S. Peters, H. WeissWallrath, Proc. 35th IEEE PVSC, Honolulu 2010
[45] M. Jeon, J. Lee, S. Kim, W. Lee, E. Cho, Materials Science and Engineering B, 176, 1285 (2011)
[46] D. Rudolph, K. Peter, A. Meijer, O. Doll, I. Kohler, 26th European Photovoltaic Solar Energy Conference and Exhibition, 1349 (2011)
[47] Basu, P. K., Cunnusamy, J., Sarangi, D. &Boreland, M. B. Renew. Energy 66, 69 (2014).
[48] D. Rudolph, K. Peter, A. Meijer, O. Doll, I. K. in the 26th European Photovoltaic Solar Energy Conference and Exhibition 1349 (2011).
[49] H. Haverkamp, A. Dastgheib-Shirazi, B. Raabe, F. Book, G. H. in Photovoltaic Specialists Conference (2008).
[50] F. Book, S. Braun, A. Herguth, A. Dastgheib-Shirazi, B. Raabe, G. H. in Photovoltaic Specialists Conference 1309 (2010).
[51] M. Dahlinger, B. Bazer-Bachi, T. C. Röder, J. R. Köhler, R. Zapf-Gottwick, and J. H. Werner, Energy Procedia 38, 250(2013).
[52] A. Ogane, K. Hirata, K. Horiuchi, Y. Nishihara, Y. Takahashi, A. Kitiyanan, and T. Fuyuki, Jpn. J. Appl. Phys. 48, 071201 (2009).
[53] D. Kray, N. Bay, G. Cimiotti, S. Kleinschmidt,N. Kösterke, A. Lösel, M. Sailer, A. Träger, H. Kühnlein, H. Nussbaumer, C. Fleischmann, F. Granek, Proc. 35th IEEE PVSC, Honolulu 2010.
[54] A. Lennon, Y. Yao, and S. Wenham, Prog. Photovoltaics: Res. Appl., 21, 1454–1468 (2013).
[55] T. C. Röder, S. J. Eisele, P. Grabitz, C. Wagner, G. Kulushich, J. R. Köhler and J. H. Werner, Photovoltaics: Research and Applications 18(7), 505 (2010).
[56] J. E. Sipe, J. F. Young, , J. S. Preston & H. M. VanDriel, Phys. Rev. B 27, 1141 (1983).
[57] Brand, A. A., Knorz, A., Zeidler, R., Nekarda, J.-F. & Preu, R. SPIE. 8473, 84730D (2012).
[58] Kim, M., Kim, D., Kim, D. &Kang, Y. Sol. Energy 109, 105 (2014).
[59] G. Amato, C. Delerue, H. J. von Bardeleben, Structural and Optical Properties of porous silicon Nanostructures, 1997.
[60] T.Sakka, D.Hotta, A. Kuroyanagi, S. Akiba, M. Mabuchi, Y. Ogata, Jpn. J. Appl. Phys. 37 (5A),1998
[61] Y. Ishikawa, T. Honda, S. Yoshinaga, Y. Jiang, Y. Uraoka, Y. Watanabe and H. Ikenoue, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1-3, 2015.
[62] K. S. Dieter. Semiconductor material and device characterization. Wiley & Sons Inc, 245, 83 (1990).
[63] C. J. Glassbrenner and Glen A. Slack. Thermal Conductivity of Silicon and Germanium from 3K to the Melting Point. Phys. Rev., 134(4A), A1058-A1069 (1964).
[64] H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, Thermal Conductivity of Silicon from 300 to 1400 K, Phys. Rev., 130(5), 1743-1748 (1963).
[65] K. Ryu, A. Upadhyaya, V. Upadhyaya, A. Rohatgi and Y. W. Ok, Prog. Photovolt: Res. Appl., 23, 119, (2015)
[66] T. S. B¨oscke, D. Kania, C. Sch¨ollhorn, D. Stichtenoth, A. Helbig, P. Sadler, M. Braun, M. Dupke, M. Wei, A. Grohe, J. Lossen, and H. J. Krokoszinski, IEEE Journal of photovoltaics, 4, 48 (2014)
[67] P. Oesterlin and U. Jäger, 18th International Conference on Advanced Thermal Processing of Semiconductors, 146-153 (2010).
指導教授 陳一塵(I-Chen Chen) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明