博碩士論文 107329024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.222.164.66
姓名 許博任(Po-Jen Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以乾式蝕刻法於柔性聚亞醯胺基板製備微通孔及銅電鍍填充應用之研究
(Preparation of Micro Through Holes and Copper Electroplating Filled Application on Flexible Polyimide Substrates by Dry Etching)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本研究使用乾式電漿蝕刻法於聚亞醯胺(PI)基板進行微通孔加工,預期
藉由電漿蝕刻之優異特性,並透過調控射頻功率(RF Power)、下電極功率與腔體工作壓力等關鍵參數,製備直徑小於30 μm 且蝕刻錐角(Taper angle)趨近0˚之圓形通孔,進一步以電鍍填銅應用演示蝕刻完整性,最終計算通孔蝕刻製程之製程能力指標(Cpk),評估本製程穩定性與符合規格程度。
結果顯示,厚度25 μm 之PI 基板可於RF Power 600 W、LF Power 300W、腔體壓力8 Pa 及氧氣流量70 sccm 下蝕刻15 min.後成功穿孔,孔洞直徑約25 μm;其Taper angle 約2.6˚,最佳化參數後將腔體壓力調整至6 Pa,可於厚度50 μm 之PI 基板蝕刻36 min.後成功製備直徑25 μm 與15 μm 通孔,Taper angle 有趨近0˚之表現,其計算後Cpk 值與潛在Cp 值分別為1.164 與1.212,而通孔亦可於電鍍填充銅後保有圖樣完整性。
摘要(英) The study demonstrates how dry plasma etching is used for micro-through hole processing on polyimide (PI) substrates. It is expected to achieve an etched
diameter less than 30 μm and an etched taper angle close to 0˚ through by adjusting RF power, lower electrode power and the chamber working pressure.
Furthermore, to demonstrate the etching integrity by applying electroplated copper after etching. Finally, the process capability index of through-hole process is calculated to evaluate the stability and the degree of conformity of the process.
The results show that the PI substrate with a thickness of 25 μm can be successfully perforated after etching for 15 min. The hole diameter is about 25μm; it’s taper angle is about 2.6˚. After optimizing the parameters, the PI substrate with a thickness of 50 μm can be etched with a diameter of 25μm and with a thickness 15 μm through-hole, while taper angle is even closer to 0˚. The value of
Cpk is 1.164, and the through-hole can also be etched successfully and the pattern integrity is maintained after the plating and copper filling.
關鍵字(中) ★ 電漿蝕刻
★ 聚亞醯胺
★ 微通孔
關鍵字(英) ★ Plasma etching
★ polyimide
★ micro-through-holes
論文目次 摘要 ........................................................................................................................ i
Abstract ................................................................................................................. ii
目錄 ...................................................................................................................... iv
圖目錄 ................................................................................................................. vii
表目錄 .................................................................................................................. ix
第一章、 前言 .................................................................................................. 1
第二章、 文獻回顧與實驗原理 ...................................................................... 4
2.1 聚亞醯胺(Polyimide, PI)材料 ............................................................. 4
2.1.1 聚亞醯胺(Polyimide, PI)沿革 ................................................... 4
2.1.2 聚亞醯胺(Polyimide, PI)特色與應用 ...................................... 5
2.2 軟性銅箔基材(Flexible Copper Clad Laminate, FCCL)介紹 ............ 8
2.2.1 三層式PI 銅箔基材 .................................................................. 9
2.2.2 雙層式PI 銅箔基材 .................................................................. 9
2.2.3 塗佈法PI 銅箔基材 ................................................................ 10
2.2.4 壓合法PI 銅箔基材 ................................................................ 10
2.2.5 濺鍍/電鍍法PI 銅箔基材 ....................................................... 11
2.3 微影(Lithography) ............................................................................. 12
2.3.1 曝光設備(Exposure equipment) .............................................. 13
2.3.2 光罩(Mask) .............................................................................. 13
2.3.3 光阻(Photoresist) ..................................................................... 14
2.4 電漿介紹 ............................................................................................ 16
2.4.1 電漿之生成 ............................................................................. 16
2.4.2 電漿蝕刻機制 ......................................................................... 17
2.5 FPC 微孔加工 .................................................................................... 19
2.5.1 機械製程(Mechanical process) ............................................... 20
2.5.2 濕式化學製程(Wet chemical process) .................................... 22
2.5.3 乾式電漿製程(Plasma process) .............................................. 24
2.5.4 雷射製程(Laser process) ......................................................... 27
2.6 製程能力指標(Process Capability Index, Cpk) ................................ 31
第三章、 實驗方法 ........................................................................................ 33
3.1 實驗流程 ............................................................................................ 33
3.1.1 光罩設計 ................................................................................. 34
3.1.2 光阻塗覆 ................................................................................. 35
3.1.3 軟烤(Soft bake) ....................................................................... 36
3.1.4 曝光 ......................................................................................... 36
3.1.5 顯影 ......................................................................................... 37
3.1.6 銅蝕刻開窗 ............................................................................. 37
3.1.7 電漿蝕刻 ................................................................................. 39
3.1.8 電鍍銅 ..................................................................................... 40
3.2 分析與實驗設備 ................................................................................ 41
3.2.1 感應耦合電漿(Inductively Coupled Plasma)蝕刻機 ............. 41
3.2.2 旋轉塗佈機(Spin coater) ........................................................ 42
3.2.3 掃描式電子顯微鏡(Scanning electron microscope) .............. 43
第四章、 結果與討論 .................................................................................... 44
4.1 腔體壓力於側壁準直性影響 ............................................................ 44
4.2 射頻功率與下電極功率影響 ............................................................ 45
4.3 柔性PI 基板微通孔 .......................................................................... 46
4.3.1 PI 厚度25 μm 之微通孔 ........................................................ 46
4.3.2 PI 厚度50 μm 之微通孔 ........................................................ 47
4.4 微通孔電鍍填銅 ................................................................................ 49
4.5 通孔試片Cpk 值 ............................................................................... 50
4.6 均勻性測試 ........................................................................................ 52
第五章、 結論 ................................................................................................ 53
第六章、 參考文獻 ........................................................................................ 54
參考文獻 [1] M. L. Hammock, A. Chorros, B. C. Tee, et al., “25th anniversary article: The
evolution of electronic skin (e-skin): a brief history, design considerations and
recent progress”, Adv. Materials, Vol. 25, Issue 42, pp.5997-6037, 2013.
[2] J. A. Rogers, T. Someya, Y. Huang. Materials and mechanics for stretchable
electronics. Science, 327(5973): 1603, 2010.
[3] T. Someya, Stretchable electronics, Weinheim: Wiley-VCH, 2013.
[4] D. Kim and Y. R. Shen, “Study of wet treatment of polyimide by sumfrequency
vibrational spectroscopy”, Appl. Phys. Lett., Vol. 74, pp.3314-
3316, 1999.
[5] M. H. Li, J. Wu, and Y. B. Gianchandani, “High performance scanning
thermal probe using a low temperature polyimide-based micromachining
process”, in Proc. IEEE Int. Conf. Micro Electro Mechanical Systems
(MEMS’00), pp. 763-768, Miyazaki, Japan, Jan. 2000.
[6] G. Stemme, “A monolithic gas flow sensor with polyimide as thermal
insulator”, IEEE Trans. on Electron Devices, Vol. 33, p.1470-1474, 1986.
[7] G. Stemme, “A CMOS integrated silicon gas flow sensor with pulsemodulated
output”, Paper presented at the Fourth International Conference
on Solid-State Sensors and Actuators, Transducers ′87, pp. 364-367, Tokyo,
Japan, Jun. 2-5, 1987.
[8] J. S. Han, Z. Y. Tan, K. Sato, and M. Shikida, “Three dimensional
interconnect technology on a flexible polyimide film”, Journal of
Micromechanics and Microengineering, Vol. 14, pp. 38-48, Aug. 2003.
[9] F. Jiang, G. B. Lee, Y. C. Tai and C. M. Ho, “A flexible micromachine-based
shear-stress sensor array and its application to separation-point detection”,
Sensors and Actuators, Vol. 79, pp. 194-203, 2000.
[10] J. Engel, J. Chen and C. Liu, “Development of a multi-modal, flexible tactile
sensing skin using polymer micromachining”, Transducers’03, The 12th
international conference on solid state sensors, actuators and microsystems,
pp. 1027-1030, Boston, United States, June 8-12, 2003.
[11] V. J. Lumelsky, M. S. Shur and S. Wagner “Sensitive Skin”, IEEE Sensors
Journal, Vol. 1, No. 1, pp. 41-51, June 2001.
[12] Q. F. Du, T. Chen, J. G. Liu and X. Y. Zeng, “Surface microstructure and
chemistry of polyimide by single pulse ablation of picosecond laser”, Applied
Surface Science, pp. 434, 588-595, 2018.
[13] M. Ohnishi, H. Shikata, M. Sakakura, Y. Shimotsuma, K. Miura and K. Hirao,
“Micro-hole processing of polyimide film by ultra-short laser pulses and its
applications”, Applied Physics A, Vol. 98, pp.123–127, 2010.
[14] J. S. Han, Z. Y. Tan, K. Sato and M. Shikida, “Polyimide Film
Micromachining by Wet-Etching Technology”, IEEJ Transactions on Sensors
and Micromachines, Vol. 125, No. 1, pp. 27-36, 2005.
[15] U. Buder, J. P. vonKlitzing and E. Obermeier, “Reactive ion etching for bulk
structuring of polyimide”, Sensors and actuators A: PHYSICAL, 2006.
[16] B. Mimoun, H. T. M. Pham, H. Vincent and D. Ronald, “Residue-free plasma
etching of polyimide coatings for small pitch vias with improved step
coverage”, Journal of Vacuum Science and Technology B, Mar. 2013.
[17] M. Zawierta and M. Martyniuk et al., “Control of sidewall profile in dry
plasma etching of polyimide”, Journal of Microelectromechanical Systems,
Jun. 2017.
[18] W. M. Edwards and I. M. Robinson, British Pat. 570,858; U.S. Pat. 2,710,853,
1955.
[19] 林金雀,聚醯亞胺薄膜全球市場及應用狀況,化工資訊月刊,頁58-62,2000。
[20] 顏慶山,全芳香族聚醯亞胺的加工與應用,高分子工業,頁77,73-79,
1998。
[21] 金進興,聚醯亞胺在IC 元件之應用,工業材料,144 期,頁118-125,
1996。
[22] 金進興,高密度軟性基板材料與應用,工業材料,175 期,2001。
[23] M. K. Ghosh, K. L. Mittal, “Polyimide Fundamentals and Application” New
York: Marcel Dekker, 1996.
[24] 沼倉研史,高密度軟性電路板入門,林振華/林振富編譯,全華科技圖書,
頁2-13, 2-17,2004。
[25] 張靖霖,軟板製程技術與應用全覽,亞洲智識,2004。
[26] 金進興,先進電子與面板構裝技術特刊,工業材料,214 期,頁96,
2004。
[27] 張麗敏,曾詩存,高精密塗佈技術之極致應用-可撓式銅箔基板,工業材
料,219 期,頁118,2005。
[28] El. Kareh, Fundamental of Semiconductor Processing Technologies, Springer
Science, 1995.
[29] S. Wolf, Silicon Processing for the VLSI Era, Ch.12, Lattice Press, 1986.
[30] B. J. Grenon, C. Peters, K. Battacharyya and W. Volk, “Formation and
Detection of Sub-pellicle Defects by Exposure to DUV System Illumination”,
Proceedings of SPIE, Vol. 3873, 1999.
[31] S. Wolf, Silicon Processing for the VLSI Era, Ch.15, Lattice Press, 1986.
[32] 莊達人,VLSI 製造技術,高立圖書,頁235-237,1998。
[33] W. Kern and J. L. Vossen, Thin Film Process Part II, Academic Press, Dec.
2012.
[34] Norman G. Einspruch, VLSI Electronics Microstructure Science, Vol. 3,
Academic Press, 1982.
[35] P. J. Revell and G. F. Goldspink, “A review of reactive ion beam etching for
production”, Vacuum, Vol. 34, pp. 455, 1984.
[36] T. T. Cao, U. Male and D. S. Huh, “Fabrication of pore-selective carboxyl
group functionalized polyimide honeycomb-patterned porous films using
KOH humidity”, Polymer, Vol. 153, pp. 86-94, 2018.
[37] T. Shibata, S. Yukizono, T. Kawashima, M. Nagai, T. Kubota and M. Mita,
“Modified imprinting process using hollow microneedle array for forming
through holes in polymers”, Journal of Microelectronic Engineering, Vol. 88,
Issue 8, pp. 2121-2125, Aug. 2011.
[38] J. S. Judge, “Etching for Pattern Definition”, Electrochemical Society, pp.19,
1976.
[39] 陳俊宇,以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究,國立中
央大學,碩士論文,2020。
[40] J. Shivani, A. Savov, S. Salman and D. Ronald, “Investigation of “fur-like”
residues post dry etching of polyimide using aluminum hard etch mask”,
Materials Science in Semiconductor Processing, Vol. 75, pp. 130-135, Mar.
2018.
[41] W. Q. Zhao and L. Z. Wang, “Microdrilling of Through-Holes in Flexible
Printed Circuits Using Picosecond Ultrashort Pulse Laser”, Article from
Polymers, 10, pp. 1390, 2018.
[42] C. H. Yen, C. C. Lee, K. H. Lo, Y. R. Shiue and S. H. Li, “A Rectifying
Acceptance Sampling Plan Based on the Process Capability Index”, Article
from mathematics, Jan. 2020.
[43] Dale H. Besterfield,Quality Control 品質管制,張志平、紀勝財編譯,東
華書局,第七版,頁228-231,2004。
[44] 張振賢、朱若梅,單邊截斷製程能力指標的研究,計量管理期刊,4:1,
頁23-38,2007。
[45] Wayne M. Moreau, Semiconductor Lithography: Principles, Practices, and
Materials, Plenum Press: New York and London, 1988.
[46] McGill, Nano tools, Micro Fab, Baseline Processes S1813 Spin Coating, from
http://mnm.physics.mcgill.ca/content/s1813-spin-coating.
[47] R. W. Jeffery, Circuit Manufacture, pp.7, Oct. 1969.
[48] 九介企業股份有限公司, 桌上型伺服旋轉塗佈機系列, 取自
http://www.everisland.com/index.php?route=product/product&product_id=
95。
[49] D. J. Elliott, Integrated Circuit Fabrication Technology, Plenum Press, 1988.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2020-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明